DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents

Abstract

Abstract Magnetotactic bacteria are aquatic microorganisms that internally biomineralize chains of magnetic nanoparticles (called magnetosomes) and use them as a compass. Here it is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment. Their heating efficiency or specific absorption rate is determined using both calorimetric and AC magnetometry methods at different magnetic field amplitudes and frequencies. In addition, the effect of the alignment of the bacteria in the direction of the field during the hyperthermia experiments is also investigated. The experimental results demonstrate that the biological structure of the magnetosome chain of magnetotactic bacteria is perfect to enhance the hyperthermia efficiency. Furthermore, fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549, and cytotoxicity studies reveal that they do not affect the viability or growth of the cancer cells. A preliminary in vitro hyperthermia study, working on clinical conditions, reveals that cancer cell proliferation is strongly affected by the hyperthermia treatment, making these bacteria promising candidates for biomedical applications.

Authors:
 [1];  [2];  [1];  [3];  [3];  [4];  [5];  [3];  [3];  [6]; ORCiD logo [7];  [8];  [9]
  1. Basque Center for Materials Applications and Nanostructures (BCMaterials) UPV/EHU Science Park Leioa 48940 Spain
  2. Departamento de Inmunología Microbiología y Parasitología Universidad del País Vasco (UPV/EHU) Leioa 48940 Spain
  3. Materials Institute Department of Physics University of South Florida (USF) Tampa FL 33620 USA
  4. Departamento de Física Aplicada II Universidad del País Vasco (UPV/EHU) Leioa 48940 Spain, Departamento de Ciencias Universidad Pública de Navarra (UPN) Pamplona 31006 Spain
  5. Basque Center for Materials Applications and Nanostructures (BCMaterials) UPV/EHU Science Park Leioa 48940 Spain, Departamento de Física Aplicada II Universidad del País Vasco (UPV/EHU) Leioa 48940 Spain
  6. SGIker Medidas Magnéticas Universidad del País Vasco (UPV/EHU) Leioa 48940 Spain
  7. Departamento CITIMAC Universidad de Cantabria (UC) Santander 39005 Spain
  8. Basque Center for Materials Applications and Nanostructures (BCMaterials) UPV/EHU Science Park Leioa 48940 Spain, Departamento de Inmunología Microbiología y Parasitología Universidad del País Vasco (UPV/EHU) Leioa 48940 Spain
  9. Basque Center for Materials Applications and Nanostructures (BCMaterials) UPV/EHU Science Park Leioa 48940 Spain, Departamento de Electricidad y Electrónica Universidad del País Vasco (UPV/EHU) Leioa 48940 Spain
Publication Date:
Research Org.:
Univ. of South Florida, Tampa, FL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1571681
Alternate Identifier(s):
OSTI ID: 1558839; OSTI ID: 1800495
Grant/Contract Number:  
FG02-07ER46438
Resource Type:
Published Article
Journal Name:
Small
Additional Journal Information:
Journal Name: Small Journal Volume: 15 Journal Issue: 41; Journal ID: ISSN 1613-6810
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Chemistry; Science & Technology; Materials Science; Physics

Citation Formats

Gandia, David, Gandarias, Lucía, Rodrigo, Irati, Robles‐García, Joshua, Das, Raja, Garaio, Eneko, García, José Ángel, Phan, Manh‐Huong, Srikanth, Hariharan, Orue, Iñaki, Alonso, Javier, Muela, Alicia, and Fdez‐Gubieda, M. Luisa. Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents. Germany: N. p., 2019. Web. doi:10.1002/smll.201902626.
Gandia, David, Gandarias, Lucía, Rodrigo, Irati, Robles‐García, Joshua, Das, Raja, Garaio, Eneko, García, José Ángel, Phan, Manh‐Huong, Srikanth, Hariharan, Orue, Iñaki, Alonso, Javier, Muela, Alicia, & Fdez‐Gubieda, M. Luisa. Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents. Germany. https://doi.org/10.1002/smll.201902626
Gandia, David, Gandarias, Lucía, Rodrigo, Irati, Robles‐García, Joshua, Das, Raja, Garaio, Eneko, García, José Ángel, Phan, Manh‐Huong, Srikanth, Hariharan, Orue, Iñaki, Alonso, Javier, Muela, Alicia, and Fdez‐Gubieda, M. Luisa. Tue . "Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents". Germany. https://doi.org/10.1002/smll.201902626.
@article{osti_1571681,
title = {Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents},
author = {Gandia, David and Gandarias, Lucía and Rodrigo, Irati and Robles‐García, Joshua and Das, Raja and Garaio, Eneko and García, José Ángel and Phan, Manh‐Huong and Srikanth, Hariharan and Orue, Iñaki and Alonso, Javier and Muela, Alicia and Fdez‐Gubieda, M. Luisa},
abstractNote = {Abstract Magnetotactic bacteria are aquatic microorganisms that internally biomineralize chains of magnetic nanoparticles (called magnetosomes) and use them as a compass. Here it is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment. Their heating efficiency or specific absorption rate is determined using both calorimetric and AC magnetometry methods at different magnetic field amplitudes and frequencies. In addition, the effect of the alignment of the bacteria in the direction of the field during the hyperthermia experiments is also investigated. The experimental results demonstrate that the biological structure of the magnetosome chain of magnetotactic bacteria is perfect to enhance the hyperthermia efficiency. Furthermore, fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549, and cytotoxicity studies reveal that they do not affect the viability or growth of the cancer cells. A preliminary in vitro hyperthermia study, working on clinical conditions, reveals that cancer cell proliferation is strongly affected by the hyperthermia treatment, making these bacteria promising candidates for biomedical applications.},
doi = {10.1002/smll.201902626},
journal = {Small},
number = 41,
volume = 15,
place = {Germany},
year = {Tue Aug 27 00:00:00 EDT 2019},
month = {Tue Aug 27 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/smll.201902626

Citation Metrics:
Cited by: 70 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial
journal, April 2000


Magnetic Nanoparticles for Cancer Therapy
journal, February 2008


Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications
journal, August 2009

  • Gao, Jinhao; Gu, Hongwei; Xu, Bing
  • Accounts of Chemical Research, Vol. 42, Issue 8
  • DOI: 10.1021/ar9000026

Heat Production by Bacterial Magnetosomes Exposed to an Oscillating Magnetic Field
journal, December 2010

  • Alphandéry, E.; Faure, S.; Raison, L.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 1
  • DOI: 10.1021/jp104580t

Tomographic imaging using the nonlinear response of magnetic particles
journal, June 2005


The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases
journal, January 2017


Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling
journal, March 2014

  • Serantes, David; Simeonidis, Konstantinos; Angelakeris, Makis
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp410717m

Configuration of the magnetosome chain: a natural magnetic nanoarchitecture
journal, January 2018


Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions
journal, August 2016

  • Felfoul, Ouajdi; Mohammadi, Mahmood; Taherkhani, Samira
  • Nature Nanotechnology, Vol. 11, Issue 11
  • DOI: 10.1038/nnano.2016.137

Magnetic nanoparticles in MR imaging and drug delivery☆
journal, August 2008


Magnetotactic Bacteria
journal, October 1982


In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice
journal, December 2016

  • Simeonidis, Konstantinos; Morales, M. Puerto; Marciello, Marzia
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep38382

Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo
journal, July 2018

  • Espinosa, Ana; Kolosnjaj-Tabi, Jelena; Abou-Hassan, Ali
  • Advanced Functional Materials, Vol. 28, Issue 37
  • DOI: 10.1002/adfm.201803660

Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia
journal, October 2013

  • Branquinho, Luis C.; Carrião, Marcus S.; Costa, Anderson S.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02887

Applications of magnetic nanoparticles in biomedicine
journal, June 2003

  • Pankhurst, Q. A.; Connolly, J.; Jones, S. K.
  • Journal of Physics D: Applied Physics, Vol. 36, Issue 13
  • DOI: 10.1088/0022-3727/36/13/201

Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium
journal, March 2016

  • Lohße, Anna; Kolinko, Isabel; Raschdorf, Oliver
  • Applied and Environmental Microbiology, Vol. 82, Issue 10
  • DOI: 10.1128/AEM.03860-15

Medical application of functionalized magnetic nanoparticles
journal, July 2005

  • Ito, Akira; Shinkai, Masashige; Honda, Hiroyuki
  • Journal of Bioscience and Bioengineering, Vol. 100, Issue 1
  • DOI: 10.1263/jbb.100.1

Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size
journal, January 2018

  • Nemati, Zohreh; Alonso, Javier; Rodrigo, Irati
  • The Journal of Physical Chemistry C, Vol. 122, Issue 4
  • DOI: 10.1021/acs.jpcc.7b10528

Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature
journal, April 2009

  • Martel, Sylvain; Mohammadi, Mahmood; Felfoul, Ouajdi
  • The International Journal of Robotics Research, Vol. 28, Issue 4
  • DOI: 10.1177/0278364908100924

Three-dimensional remote aggregation and steering of magnetotactic bacteria microrobots for drug delivery applications
journal, November 2013

  • de Lanauze, Dominic; Felfoul, Ouajdi; Turcot, Jean-Philippe
  • The International Journal of Robotics Research, Vol. 33, Issue 3
  • DOI: 10.1177/0278364913500543

Engineering the perfect (bacterial) cancer therapy
journal, October 2010

  • Forbes, Neil S.
  • Nature Reviews Cancer, Vol. 10, Issue 11
  • DOI: 10.1038/nrc2934

Optimal Parameters for Hyperthermia Treatment Using Biomineralized Magnetite Nanoparticles: Theoretical and Experimental Approach
journal, October 2016

  • Muela, Alicia; Muñoz, David; Martín-Rodríguez, Rosa
  • The Journal of Physical Chemistry C, Vol. 120, Issue 42
  • DOI: 10.1021/acs.jpcc.6b07321

Magnetite Biomineralization in Magnetospirillum gryphiswaldense : Time-Resolved Magnetic and Structural Studies
journal, April 2013

  • Fdez-Gubieda, M. Luisa; Muela, Alicia; Alonso, Javier
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn3059983

Magnetotaxis Enables Magnetotactic Bacteria to Navigate in Flow
journal, December 2017


NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review
journal, September 2013

  • Alphandéry, Edouard; Chebbi, Imène; Guyot, François
  • International Journal of Hyperthermia, Vol. 29, Issue 8
  • DOI: 10.3109/02656736.2013.821527

In Vitro Cultivation of Human Tumors: Establishment of Cell Lines Derived From a Series of Solid Tumors2
journal, November 1973

  • Giard, Donald J.; Aaronson, Stuart A.; Todaro, George J.
  • JNCI: Journal of the National Cancer Institute, Vol. 51, Issue 5
  • DOI: 10.1093/jnci/51.5.1417

Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment
journal, March 2012

  • Guardia, Pablo; Di Corato, Riccardo; Lartigue, Lenaic
  • ACS Nano, Vol. 6, Issue 4
  • DOI: 10.1021/nn2048137

Killing of Staphylococcus aureus via Magnetic Hyperthermia Mediated by Magnetotactic Bacteria
journal, February 2016

  • Chen, Changyou; Chen, Linjie; Yi, Yong
  • Applied and Environmental Microbiology, Vol. 82, Issue 7
  • DOI: 10.1128/AEM.04103-15

Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy
journal, April 2007


Magnetotactic bacteria: nanodrivers of the future
journal, July 2015


Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system
journal, May 2005

  • Neuberger, Tobias; Schöpf, Bernhard; Hofmann, Heinrich
  • Journal of Magnetism and Magnetic Materials, Vol. 293, Issue 1
  • DOI: 10.1016/j.jmmm.2005.01.064

Bacterial magnetosomes – nature's powerful contribution to MPI tracer research
journal, January 2017

  • Kraupner, A.; Eberbeck, D.; Heinke, D.
  • Nanoscale, Vol. 9, Issue 18
  • DOI: 10.1039/C7NR01530E

Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles
journal, October 2016

  • Abenojar, Eric C.; Wickramasinghe, Sameera; Bas-Concepcion, Jesbaniris
  • Progress in Natural Science: Materials International, Vol. 26, Issue 5
  • DOI: 10.1016/j.pnsc.2016.09.004

Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia
journal, April 2016

  • Das, Raja; Alonso, Javier; Nemati Porshokouh, Zohreh
  • The Journal of Physical Chemistry C, Vol. 120, Issue 18
  • DOI: 10.1021/acs.jpcc.6b02006

Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
journal, April 2013

  • Martinez-Boubeta, Carlos; Simeonidis, Konstantinos; Makridis, Antonios
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01652

On the mineral core of ferritin-like proteins: structural and magnetic characterization
journal, January 2016

  • García-Prieto, A.; Alonso, J.; Muñoz, D.
  • Nanoscale, Vol. 8, Issue 2
  • DOI: 10.1039/C5NR04446D

The emerging nanomedicine landscape
journal, October 2006

  • Wagner, Volker; Dullaart, Anwyn; Bock, Anne-Katrin
  • Nature Biotechnology, Vol. 24, Issue 10
  • DOI: 10.1038/nbt1006-1211

Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: Photothermia is far more efficient than magnetic hyperthermia
journal, June 2018


New paradigm for tumor theranostic methodology using bacteria-based microrobot
journal, December 2013

  • Park, Sung Jun; Park, Seung-Hwan; Cho, Sunghoon
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03394

Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications
journal, March 2014


Paul Ehrlich's magic bullet concept: 100 years of progress
journal, May 2008

  • Strebhardt, Klaus; Ullrich, Axel
  • Nature Reviews Cancer, Vol. 8, Issue 6
  • DOI: 10.1038/nrc2394

Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia
journal, September 2013


Nanorobot: A versatile tool in nanomedicine
journal, January 2006

  • Patel, Geeta M.; Patel, Gayatri C.; Patel, Ritesh B.
  • Journal of Drug Targeting, Vol. 14, Issue 2
  • DOI: 10.1080/10611860600612862

A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles
journal, June 2015

  • Conde-Leboran, Ivan; Baldomir, Daniel; Martinez-Boubeta, Carlos
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b02555

Fundamentals and advances in magnetic hyperthermia
journal, December 2015

  • Périgo, E. A.; Hemery, G.; Sandre, O.
  • Applied Physics Reviews, Vol. 2, Issue 4
  • DOI: 10.1063/1.4935688

Multifunctional Ferromagnetic Disks for Modulating Cell Function
journal, November 2012

  • Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.
  • IEEE Transactions on Magnetics, Vol. 48, Issue 11
  • DOI: 10.1109/TMAG.2012.2198209

Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense
journal, June 2017

  • Marcano, L.; García-Prieto, A.; Muñoz, D.
  • Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1861, Issue 6
  • DOI: 10.1016/j.bbagen.2017.01.012

A multifrequency eletromagnetic applicator with an integrated AC magnetometer for magnetic hyperthermia experiments
journal, October 2014


Nanomedicine: Application of Nanobiotechnology in Medical Practice
journal, January 2008

  • Jain, K. K.
  • Medical Principles and Practice, Vol. 17, Issue 2
  • DOI: 10.1159/000112961

Magnetotactic Bacteria as Potential Sources of Bioproducts
journal, January 2015

  • Araujo, Ana; Abreu, Fernanda; Silva, Karen
  • Marine Drugs, Vol. 13, Issue 1
  • DOI: 10.3390/md13010389

Visualizing Implanted Tumors in Mice with Magnetic Resonance Imaging Using Magnetotactic Bacteria
journal, August 2009


Targeting active cancer cells with smart bullets
journal, May 2017