skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on October 23, 2020

Title: On the prediction of critical heat flux using a physics-informed machine learning-aided framework

Authors:
; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1571549
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Applied Thermal Engineering
Additional Journal Information:
Journal Name: Applied Thermal Engineering Journal Volume: 164 Journal Issue: C; Journal ID: ISSN 1359-4311
Publisher:
Elsevier
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Zhao, Xingang, Shirvan, Koroush, Salko, Robert K., and Guo, Fengdi. On the prediction of critical heat flux using a physics-informed machine learning-aided framework. United Kingdom: N. p., 2020. Web. doi:10.1016/j.applthermaleng.2019.114540.
Zhao, Xingang, Shirvan, Koroush, Salko, Robert K., & Guo, Fengdi. On the prediction of critical heat flux using a physics-informed machine learning-aided framework. United Kingdom. doi:10.1016/j.applthermaleng.2019.114540.
Zhao, Xingang, Shirvan, Koroush, Salko, Robert K., and Guo, Fengdi. Wed . "On the prediction of critical heat flux using a physics-informed machine learning-aided framework". United Kingdom. doi:10.1016/j.applthermaleng.2019.114540.
@article{osti_1571549,
title = {On the prediction of critical heat flux using a physics-informed machine learning-aided framework},
author = {Zhao, Xingang and Shirvan, Koroush and Salko, Robert K. and Guo, Fengdi},
abstractNote = {},
doi = {10.1016/j.applthermaleng.2019.114540},
journal = {Applied Thermal Engineering},
number = C,
volume = 164,
place = {United Kingdom},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 23, 2020
Publisher's Version of Record

Save / Share: