skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices

Abstract

Electrocatalytic CO2 reduction is often carried out in a solution electrolyte such as KHCO3(aq), which allows for ion conduction between electrodes. Thus, liquid products that form are in a mixture with the dissolved salts, requiring energy-intensive downstream separation. In this work, we report continuous electrocatalytic conversion of CO2 to pure liquid fuel solutions in cells that utilize solid electrolytes, where electrochemically generated cations (such as H+) and anions (such as HCOO–) are combined to form pure product solutions without mixing with other ions. Using a HCOOH-selective (Faradaic efficiencies>90%) and easily scaled Bi catalyst at the cathode, we demonstrate production of pure HCOOH solutions with concentrations up to 12M. We also show 100h continuous and stable generation of 0.1 M HCOOH with negligible degradation in selectivity and activity. Production of other electrolyte-free C2+ liquid oxygenate solutions, including acetic acid, ethanol and n-propanol, are also demonstrated using a Cu catalyst. Lastly, we show that our CO2 reduction cell with solid electrolytes can be modified to suit other, more complex practical applications.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [5];  [6]; ORCiD logo [3]; ORCiD logo [2]
  1. Rice Univ., Houston, TX (United States); Harvard Univ., Cambridge, MA (United States)
  2. Rice Univ., Houston, TX (United States)
  3. King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia)
  4. Harvard Univ., Cambridge, MA (United States)
  5. Northeastern Univ., Burlington, MA (United States)
  6. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1571402
Report Number(s):
BNL-212214-2019-JAAM
Journal ID: ISSN 2058-7546
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 4; Journal Issue: 9; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Xia, Chuan, Zhu, Peng, Jiang, Qiu, Pan, Ying, Liang, Wentao, Stavitsk, Eli, Alshareef, Husam N., and Wang, Haotian. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. United States: N. p., 2019. Web. doi:10.1038/s41560-019-0451-x.
Xia, Chuan, Zhu, Peng, Jiang, Qiu, Pan, Ying, Liang, Wentao, Stavitsk, Eli, Alshareef, Husam N., & Wang, Haotian. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. United States. doi:10.1038/s41560-019-0451-x.
Xia, Chuan, Zhu, Peng, Jiang, Qiu, Pan, Ying, Liang, Wentao, Stavitsk, Eli, Alshareef, Husam N., and Wang, Haotian. Mon . "Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices". United States. doi:10.1038/s41560-019-0451-x. https://www.osti.gov/servlets/purl/1571402.
@article{osti_1571402,
title = {Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices},
author = {Xia, Chuan and Zhu, Peng and Jiang, Qiu and Pan, Ying and Liang, Wentao and Stavitsk, Eli and Alshareef, Husam N. and Wang, Haotian},
abstractNote = {Electrocatalytic CO2 reduction is often carried out in a solution electrolyte such as KHCO3(aq), which allows for ion conduction between electrodes. Thus, liquid products that form are in a mixture with the dissolved salts, requiring energy-intensive downstream separation. In this work, we report continuous electrocatalytic conversion of CO2 to pure liquid fuel solutions in cells that utilize solid electrolytes, where electrochemically generated cations (such as H+) and anions (such as HCOO–) are combined to form pure product solutions without mixing with other ions. Using a HCOOH-selective (Faradaic efficiencies>90%) and easily scaled Bi catalyst at the cathode, we demonstrate production of pure HCOOH solutions with concentrations up to 12M. We also show 100h continuous and stable generation of 0.1 M HCOOH with negligible degradation in selectivity and activity. Production of other electrolyte-free C2+ liquid oxygenate solutions, including acetic acid, ethanol and n-propanol, are also demonstrated using a Cu catalyst. Lastly, we show that our CO2 reduction cell with solid electrolytes can be modified to suit other, more complex practical applications.},
doi = {10.1038/s41560-019-0451-x},
journal = {Nature Energy},
number = 9,
volume = 4,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Covalent organic frameworks comprising cobalt porphyrins for catalytic CO 2 reduction in water
journal, August 2015


Hierarchical Mesoporous SnO 2 Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO 2 Reduction with High Efficiency and Selectivity
journal, December 2016

  • Li, Fengwang; Chen, Lu; Knowles, Gregory P.
  • Angewandte Chemie International Edition, Vol. 56, Issue 2
  • DOI: 10.1002/anie.201608279

Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C2 Products with High Single-Pass Conversion
journal, January 2019


CO 2 Conversion to Formic Acid in a Three Compartment Cell with Sustainion™ Membranes
journal, July 2017

  • Yang, Hongzhou; Kaczur, Jerry J.; Sajjad, Syed D.
  • ECS Transactions, Vol. 77, Issue 11
  • DOI: 10.1149/07711.1425ecst

Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate
journal, November 2016


Catholyte-Free Electrocatalytic CO 2 Reduction to Formate
journal, May 2018

  • Lee, Wonhee; Kim, Young Eun; Youn, Min Hye
  • Angewandte Chemie International Edition, Vol. 57, Issue 23
  • DOI: 10.1002/anie.201803501

Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts
journal, March 2015

  • Ren, Dan; Deng, Yilin; Handoko, Albertus Denny
  • ACS Catalysis, Vol. 5, Issue 5
  • DOI: 10.1021/cs502128q

Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction
journal, January 2018


Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
journal, April 2014

  • Li, Christina W.; Ciston, Jim; Kanan, Matthew W.
  • Nature, Vol. 508, Issue 7497
  • DOI: 10.1038/nature13249

Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to n -Propanol
journal, December 2015

  • Ren, Dan; Wong, Nian Tee; Handoko, Albertus Denny
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 1
  • DOI: 10.1021/acs.jpclett.5b02554

Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2 –C 3 products
journal, September 2017

  • Kim, Dohyung; Kley, Christopher S.; Li, Yifan
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 40
  • DOI: 10.1073/pnas.1711493114

General Techno-Economic Analysis of CO 2 Electrolysis Systems
journal, February 2018

  • Jouny, Matthew; Luc, Wesley; Jiao, Feng
  • Industrial & Engineering Chemistry Research, Vol. 57, Issue 6
  • DOI: 10.1021/acs.iecr.7b03514

What Should We Make with CO2 and How Can We Make It?
journal, May 2018


The p-Orbital Delocalization of Main-Group Metals to Boost CO 2 Electroreduction
journal, November 2018

  • He, Sisi; Ni, Fenglou; Ji, Yujin
  • Angewandte Chemie International Edition, Vol. 57, Issue 49
  • DOI: 10.1002/anie.201810538

Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate
journal, December 2017


Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate
journal, January 2014

  • Zhang, Sheng; Kang, Peng; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 136, Issue 5
  • DOI: 10.1021/ja4113885

Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO 2 to formate
journal, January 2016

  • Zhong, Hexiang; Qiu, Yanling; Zhang, Taotao
  • Journal of Materials Chemistry A, Vol. 4, Issue 36
  • DOI: 10.1039/C6TA06202D

2D Metal Oxyhalide-Derived Catalysts for Efficient CO 2 Electroreduction
journal, August 2018

  • García de Arquer, F. Pelayo; Bushuyev, Oleksandr S.; De Luna, Phil
  • Advanced Materials, Vol. 30, Issue 38
  • DOI: 10.1002/adma.201802858

Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel
journal, January 2016


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries
journal, January 2018


The Electrolytic Synthesis of Hydrogen Peroxide in a Dual Membrane Cell
journal, January 1983

  • Kuehn, Christa
  • Journal of The Electrochemical Society, Vol. 130, Issue 5
  • DOI: 10.1149/1.2119897

Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell
journal, August 2002


CO 2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface
journal, May 2018


The Effects of Catalyst Layer Deposition Methodology on Electrode Performance
journal, February 2013

  • Jhong, Huei-Ru “Molly”; Brushett, Fikile R.; Kenis, Paul J. A.
  • Advanced Energy Materials, Vol. 3, Issue 5
  • DOI: 10.1002/aenm.201200759

Insights into the Low Overpotential Electroreduction of CO 2 to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer
journal, November 2017


Electrolytic CO 2 Reduction in a Flow Cell
journal, March 2018

  • Weekes, David M.; Salvatore, Danielle A.; Reyes, Angelica
  • Accounts of Chemical Research, Vol. 51, Issue 4
  • DOI: 10.1021/acs.accounts.8b00010

Charging up Stationary Energy Storage
journal, January 2019


Isolated Ni single atoms in graphene nanosheets for high-performance CO 2 reduction
journal, January 2018

  • Jiang, Kun; Siahrostami, Samira; Zheng, Tingting
  • Energy & Environmental Science, Vol. 11, Issue 4
  • DOI: 10.1039/C7EE03245E

Design of an Electrochemical Cell Making Syngas  (CO + H2)  from CO2 and H2O Reduction at Room Temperature
journal, January 2008

  • Delacourt, Charles; Ridgway, Paul L.; Kerr, John B.
  • Journal of The Electrochemical Society, Vol. 155, Issue 1, p. B42-B49
  • DOI: 10.1149/1.2801871

Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes
journal, February 2018

  • Natsui, Keisuke; Iwakawa, Hitomi; Ikemiya, Norihito
  • Angewandte Chemie, Vol. 130, Issue 10
  • DOI: 10.1002/ange.201712271

Pd-Catalyzed Electrohydrogenation of Carbon Dioxide to Formate: High Mass Activity at Low Overpotential and Identification of the Deactivation Pathway
journal, April 2015

  • Min, Xiaoquan; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/ja511890h

Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction
journal, September 2016

  • Lei, Fengcai; Liu, Wei; Sun, Yongfu
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12697

Boosting Formate Production in Electrocatalytic CO 2 Reduction over Wide Potential Window on Pd Surfaces
journal, February 2018

  • Jiang, Bei; Zhang, Xia-Guang; Jiang, Kun
  • Journal of the American Chemical Society, Vol. 140, Issue 8
  • DOI: 10.1021/jacs.7b12506

Electrochemical Reduction of Carbon Dioxide to Syngas and Formate at Dendritic Copper–Indium Electrocatalysts
journal, July 2017

  • Hoffman, Zachary B.; Gray, Tristan S.; Moraveck, Kasey B.
  • ACS Catalysis, Vol. 7, Issue 8
  • DOI: 10.1021/acscatal.7b01161

Ultrathin Co 3 O 4 Layers Realizing Optimized CO 2 Electroreduction to Formate
journal, November 2015

  • Gao, Shan; Jiao, Xingchen; Sun, Zhongti
  • Angewandte Chemie International Edition, Vol. 55, Issue 2
  • DOI: 10.1002/anie.201509800

Selective CO 2 Reduction on 2D Mesoporous Bi Nanosheets
journal, October 2018


Controllable Synthesis of Few-Layer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO 2 Reduction Performance
journal, September 2018

  • Zhang, Ying; Zhang, Xiaolong; Ling, Yunzhi
  • Angewandte Chemie International Edition, Vol. 57, Issue 40
  • DOI: 10.1002/anie.201807466

Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis
journal, September 2015

  • Zhou, Yangen; Zhang, Yongfan; Lin, Mousheng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9340

[Bi2O2]2+ Layers in Bi2O2(OH)(NO3): Synthesis And Structure Determination
journal, March 2005

  • Henry, Natacha; Evain, Michel; Deniard, Philippe
  • Zeitschrift für Naturforschung B, Vol. 60, Issue 3
  • DOI: 10.1515/znb-2005-0315

Polyethylenimine-Enhanced Electrocatalytic Reduction of CO 2 to Formate at Nitrogen-Doped Carbon Nanomaterials
journal, May 2014

  • Zhang, Sheng; Kang, Peng; Ubnoske, Stephen
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5031529

Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low Overpotentials
journal, September 2011

  • Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.
  • Science, Vol. 334, Issue 6056, p. 643-644
  • DOI: 10.1126/science.1209786

Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis
journal, December 2017


Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
journal, January 2012

  • Lee, Youngmin; Suntivich, Jin; May, Kevin J.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz2016507

Fuel crossover in direct formic acid fuel cells
journal, May 2007


New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

Direct formic acid fuel cells
journal, September 2002


An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation
journal, May 2013

  • Gong, Ming; Li, Yanguang; Wang, Hailiang
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja4027715

Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices
journal, January 2015

  • Vermaas, David A.; Sassenburg, Mark; Smith, Wilson A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 38
  • DOI: 10.1039/C5TA06315A

Anion Exchange Membrane Electrolyzers Showing 1 A/cm2 at Less Than 2 V
journal, August 2016


CO 2 Electrolysis to CO and O 2 at High Selectivity, Stability and Efficiency Using Sustainion Membranes
journal, January 2018

  • Liu, Zengcai; Yang, Hongzhou; Kutz, Robert
  • Journal of The Electrochemical Society, Vol. 165, Issue 15
  • DOI: 10.1149/2.0501815jes

The effect of membrane on an alkaline water electrolyzer
journal, December 2017


Microstructure of Cesium Hydrogen Salts of 12-Tungstophosphoric Acid Relevant to Novel Acid Catalysis
journal, August 2000

  • Okuhara, Toshio; Watanabe, Hiromu; Nishimura, Toru
  • Chemistry of Materials, Vol. 12, Issue 8
  • DOI: 10.1021/cm9907561

Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid
journal, December 2015