skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on October 20, 2020

Title: Validating the Water Vapor Variance Similarity Relationship in the Interfacial Layer Using Observations and Large‐Eddy Simulations

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]
  1. Cooperative Institute for Mesoscale Meteorological StudiesThe University of Oklahoma, and NOAA/National Severe Storms Laboratory Norman OK USA, Now at Enable Midstream Partners Oklahoma City OK USA
  2. Global Systems DivisionNOAA Earth System Research Laboratory Boulder CO USA
  3. Department of PhysicsCleveland State University Cleveland OH USA
  4. Institute of Physics and MeteorologyUniversity of Hohenheim Stuttgart Germany
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1571314
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Name: Journal of Geophysical Research: Atmospheres Journal Volume: 124 Journal Issue: 20; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English

Citation Formats

Osman, M. K., Turner, D. D., Heus, T., and Wulfmeyer, V. Validating the Water Vapor Variance Similarity Relationship in the Interfacial Layer Using Observations and Large‐Eddy Simulations. United States: N. p., 2019. Web. doi:10.1029/2019JD030653.
Osman, M. K., Turner, D. D., Heus, T., & Wulfmeyer, V. Validating the Water Vapor Variance Similarity Relationship in the Interfacial Layer Using Observations and Large‐Eddy Simulations. United States. doi:10.1029/2019JD030653.
Osman, M. K., Turner, D. D., Heus, T., and Wulfmeyer, V. Mon . "Validating the Water Vapor Variance Similarity Relationship in the Interfacial Layer Using Observations and Large‐Eddy Simulations". United States. doi:10.1029/2019JD030653.
@article{osti_1571314,
title = {Validating the Water Vapor Variance Similarity Relationship in the Interfacial Layer Using Observations and Large‐Eddy Simulations},
author = {Osman, M. K. and Turner, D. D. and Heus, T. and Wulfmeyer, V.},
abstractNote = {},
doi = {10.1029/2019JD030653},
journal = {Journal of Geophysical Research: Atmospheres},
number = 20,
volume = 124,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 20, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains
journal, January 2006

  • Ferrare, Richard; Turner, David; Clayton, Marian
  • Journal of Geophysical Research, Vol. 111, Issue D5
  • DOI: 10.1029/2005JD005836

Aircraft Evaluation of Ground-Based Raman Lidar Water Vapor Turbulence Profiles in Convective Mixed Layers
journal, May 2014

  • Turner, D. D.; Ferrare, R. A.; Wulfmeyer, V.
  • Journal of Atmospheric and Oceanic Technology, Vol. 31, Issue 5
  • DOI: 10.1175/JTECH-D-13-00075.1

Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar
journal, August 2013

  • Newsom, Rob K.; Turner, David D.; Goldsmith, John E. M.
  • Journal of Atmospheric and Oceanic Technology, Vol. 30, Issue 8
  • DOI: 10.1175/JTECH-D-12-00138.1

Dynamics of Sheared Convective Boundary Layer Entrainment. Part I: Methodological Background and Large-Eddy Simulations
journal, April 2006

  • Conzemius, Robert J.; Fedorovich, Evgeni
  • Journal of the Atmospheric Sciences, Vol. 63, Issue 4
  • DOI: 10.1175/JAS3691.1

Three-dimensional numerical study of turbulence in an entraining mixed layer
journal, October 1974


Classification of Precipitating Clouds in the Tropics Using 915-MHz Wind Profilers
journal, October 1995


A PDF-Based Model for Boundary Layer Clouds. Part I: Method and Model Description
journal, December 2002


Can Water Vapour Raman Lidar Resolve Profiles of Turbulent Variables in the Convective Boundary Layer?
journal, May 2010

  • Wulfmeyer, Volker; Pal, Sandip; Turner, David D.
  • Boundary-Layer Meteorology, Vol. 136, Issue 2
  • DOI: 10.1007/s10546-010-9494-z

Measuring Second- through Fourth-Order Moments in Noisy Data
journal, October 2000


MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows
journal, January 2017

  • van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs
  • Geoscientific Model Development, Vol. 10, Issue 8
  • DOI: 10.5194/gmd-10-3145-2017

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols
journal, January 1998

  • Goldsmith, J. E. M.; Blair, Forest H.; Bisson, Scott E.
  • Applied Optics, Vol. 37, Issue 21
  • DOI: 10.1364/AO.37.004979

Shallow Cumulus in WRF Parameterizations Evaluated against LASSO Large-Eddy Simulations
journal, December 2018

  • Angevine, Wayne M.; Olson, Joseph; Kenyon, Jaymes
  • Monthly Weather Review, Vol. 146, Issue 12
  • DOI: 10.1175/MWR-D-18-0115.1

Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer
journal, September 2017

  • Berg, Larry K.; Newsom, Rob K.; Turner, David D.
  • Journal of Applied Meteorology and Climatology, Vol. 56, Issue 9
  • DOI: 10.1175/JAMC-D-16-0359.1

An Evaluation Of Local Similarity At The Top Of The Mixed Layer Based On Large-Eddy Simulations
journal, November 2001


Characterizing the convective boundary layer turbulence with a High Spectral Resolution Lidar: HSRL Turbulence Observations
journal, November 2014

  • McNicholas, Conor; Turner, D. D.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 22
  • DOI: 10.1002/2014JD021867

Characteristics of Water Vapor Turbulence Profiles in Convective Boundary Layers During the Dry and Wet Seasons Over Darwin
journal, May 2018

  • Osman, M. K.; Turner, D. D.; Heus, T.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 10
  • DOI: 10.1029/2017JD028060

Monitoring and Modeling the Terrestrial System from Pores to Catchments: The Transregional Collaborative Research Center on Patterns in the Soil–Vegetation–Atmosphere System
journal, October 2015

  • Simmer, Clemens; Thiele-Eich, Insa; Masbou, Matthieu
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 10
  • DOI: 10.1175/BAMS-D-13-00134.1

Simultaneous analog and photon counting detection for Raman lidar
journal, January 2009

  • Newsom, Rob K.; Turner, David D.; Mielke, Bernd
  • Applied Optics, Vol. 48, Issue 20
  • DOI: 10.1364/AO.48.003903

Numerical Study of Penetrative and “Solid Lid” Nonpenetrative Convective Boundary Layers
journal, January 1996


A UHF Wind Profiler for the Boundary Layer: Brief Description and Initial Results
journal, June 1988


The Two-Layer Structure of the Entrainment Zone in the Convective Boundary Layer
journal, June 2014

  • Garcia, Jade Rachele; Mellado, Juan Pedro
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 6
  • DOI: 10.1175/JAS-D-13-0148.1

A Closer Look at Boundary Layer Inversion in Large-Eddy Simulations and Bulk Models: Buoyancy-Driven Case
journal, February 2015

  • Gentine, Pierre; Bellon, Gilles; van Heerwaarden, Chiel C.
  • Journal of the Atmospheric Sciences, Vol. 72, Issue 2
  • DOI: 10.1175/JAS-D-13-0377.1

A New Research Approach for Observing and Characterizing Land–Atmosphere Feedback
journal, August 2018

  • Wulfmeyer, Volker; Turner, David D.; Baker, B.
  • Bulletin of the American Meteorological Society, Vol. 99, Issue 8
  • DOI: 10.1175/BAMS-D-17-0009.1

Convective Profile Constants Revisited
journal, March 2000

  • Grachev, A. A.; Fairall, C. W.; Bradley, E. F.
  • Boundary-Layer Meteorology, Vol. 94, Issue 3
  • DOI: 10.1023/A:1002452529672

Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer
journal, January 2009

  • Nakanishi, Mikio; Niino, Hiroshi
  • Journal of the Meteorological Society of Japan, Vol. 87, Issue 5
  • DOI: 10.2151/jmsj.87.895

Land–Atmosphere Interactions: The LoCo Perspective
journal, June 2018

  • Santanello, Joseph A.; Dirmeyer, Paul A.; Ferguson, Craig R.
  • Bulletin of the American Meteorological Society, Vol. 99, Issue 6
  • DOI: 10.1175/BAMS-D-17-0001.1

Statistics of Scalar Fields in the Atmospheric Boundary Layer Based on Large-eddy Simulations. Part 1: Free Convection
journal, September 2005


A Revised Scheme for the WRF Surface Layer Formulation
journal, March 2012

  • Jiménez, Pedro A.; Dudhia, Jimy; González-Rouco, J. Fidel
  • Monthly Weather Review, Vol. 140, Issue 3
  • DOI: 10.1175/MWR-D-11-00056.1

Water vapor turbulence profiles in stationary continental convective mixed layers: WATER VAPOR TURBULENCE PROFILES
journal, October 2014

  • Turner, D. D.; Wulfmeyer, V.; Berg, L. K.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 19
  • DOI: 10.1002/2014JD022202

Revisiting entrainment relationships for shear-free and sheared convective boundary layers through large-eddy simulations
journal, October 2018

  • Liu, Cheng; Fedorovich, Evgeni; Huang, Jianping
  • Quarterly Journal of the Royal Meteorological Society, Vol. 144, Issue 716
  • DOI: 10.1002/qj.3330

CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer
journal, April 2002


Negative water vapour skewness and dry tongues in the convective boundary layer: observations and large-eddy simulation budget analysis
journal, December 2006


Moisture statistics in free convective boundary layers growing into linearly stratified atmospheres: Moisture Statistics in Free Convection
journal, July 2017

  • Mellado, Juan Pedro; Puche, Marc; van Heerwaarden, Chiel C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 143, Issue 707
  • DOI: 10.1002/qj.3095