skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016

Abstract

The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60%. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, andmore » extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD 400 > 0.4).The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 > nm (SSA 500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [5];  [6];  [7];  [5];  [8]; ORCiD logo [9];  [9];  [10]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [7]; ORCiD logo [11];  [1];  [12]; ORCiD logo [5]; ORCiD logo [13] more »;  [14];  [14] « less
  1. Bay Area Environmental Research Inst., Moffett Field, CA (United States); NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States)
  2. Univ. of Oklahoma, Norman, OK (United States)
  3. Univ. of Washington, Seattle, WA (United States)
  4. Univ. of Miami, FL (United States)
  5. NASA Langley Research Center, Hampton, VA (United States)
  6. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  7. Univ. of Colorado, Boulder, CO (United States)
  8. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  9. Univ. of Hawaii, Honolulu, HI (United States)
  10. NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States)
  11. Brookhaven National Lab. (BNL), Upton, NY (United States)
  12. NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Univ. Space Research Association, Mountain View, CA (United States)
  13. Columbia Univ., New York, NY (United States); NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  14. California Inst. of Technology (CalTech), La Canada Flintridge, CA (United States). Jet Propulsion Lab.
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1571274
Report Number(s):
PNNL-SA-147352
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 19; Journal Issue: 14; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Pistone, Kristina, Redemann, Jens, Doherty, Sarah, Zuidema, Paquita, Burton, Sharon, Cairns, Brian, Cochrane, Sabrina, Ferrare, Richard, Flynn, Connor, Freitag, Steffen, Howell, Steven G., Kacenelenbogen, Meloë, LeBlanc, Samuel, Liu, Xu, Schmidt, K. Sebastian, Sedlacek III, Arthur J., Segal-Rozenhaimer, Michal, Shinozuka, Yohei, Stamnes, Snorre, van Diedenhoven, Bastiaan, Van Harten, Gerard, and Xu, Feng. Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016. United States: N. p., 2019. Web. doi:10.5194/acp-19-9181-2019.
Pistone, Kristina, Redemann, Jens, Doherty, Sarah, Zuidema, Paquita, Burton, Sharon, Cairns, Brian, Cochrane, Sabrina, Ferrare, Richard, Flynn, Connor, Freitag, Steffen, Howell, Steven G., Kacenelenbogen, Meloë, LeBlanc, Samuel, Liu, Xu, Schmidt, K. Sebastian, Sedlacek III, Arthur J., Segal-Rozenhaimer, Michal, Shinozuka, Yohei, Stamnes, Snorre, van Diedenhoven, Bastiaan, Van Harten, Gerard, & Xu, Feng. Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016. United States. doi:10.5194/acp-19-9181-2019.
Pistone, Kristina, Redemann, Jens, Doherty, Sarah, Zuidema, Paquita, Burton, Sharon, Cairns, Brian, Cochrane, Sabrina, Ferrare, Richard, Flynn, Connor, Freitag, Steffen, Howell, Steven G., Kacenelenbogen, Meloë, LeBlanc, Samuel, Liu, Xu, Schmidt, K. Sebastian, Sedlacek III, Arthur J., Segal-Rozenhaimer, Michal, Shinozuka, Yohei, Stamnes, Snorre, van Diedenhoven, Bastiaan, Van Harten, Gerard, and Xu, Feng. Thu . "Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016". United States. doi:10.5194/acp-19-9181-2019. https://www.osti.gov/servlets/purl/1571274.
@article{osti_1571274,
title = {Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016},
author = {Pistone, Kristina and Redemann, Jens and Doherty, Sarah and Zuidema, Paquita and Burton, Sharon and Cairns, Brian and Cochrane, Sabrina and Ferrare, Richard and Flynn, Connor and Freitag, Steffen and Howell, Steven G. and Kacenelenbogen, Meloë and LeBlanc, Samuel and Liu, Xu and Schmidt, K. Sebastian and Sedlacek III, Arthur J. and Segal-Rozenhaimer, Michal and Shinozuka, Yohei and Stamnes, Snorre and van Diedenhoven, Bastiaan and Van Harten, Gerard and Xu, Feng},
abstractNote = {The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60%. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400 > 0.4).The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 > nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.},
doi = {10.5194/acp-19-9181-2019},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 14,
volume = 19,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa: SMOKE PROPERTIES FROM BIOMASS BURNING
journal, August 2003

  • Abel, Steven J.; Haywood, Jim M.; Highwood, Eleanor J.
  • Geophysical Research Letters, Vol. 30, Issue 15
  • DOI: 10.1029/2003GL017342

Reduction of Tropical Cloudiness by Soot
journal, May 2000


The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments: Role of the AEJ-S over Southeast Atlantic
journal, April 2016

  • Adebiyi, Adeyemi A.; Zuidema, Paquita
  • Quarterly Journal of the Royal Meteorological Society, Vol. 142, Issue 697
  • DOI: 10.1002/qj.2765

Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic
journal, June 2018


Aerosols, Cloud Microphysics, and Fractional Cloudiness
journal, September 1989


Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer
journal, January 1998


Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia
journal, January 2003

  • Anderson, Theodore L.
  • Journal of Geophysical Research, Vol. 108, Issue D23
  • DOI: 10.1029/2002JD003247

Solar absorption by elemental and brown carbon determined from spectral observations
journal, October 2012

  • Bahadur, R.; Praveen, P. S.; Xu, Y.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 43
  • DOI: 10.1073/pnas.1205910109

Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000: SPECTRAL AEROSOL SINGLE SCATTERING ALBEDO
journal, February 2003

  • Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D13
  • DOI: 10.1029/2002JD002435

Spectral absorption properties of atmospheric aerosols
journal, January 2007

  • Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 23
  • DOI: 10.5194/acp-7-5937-2007

Aerosol spectral absorption in the Mexico City area: results from airborne measurements during MILAGRO/INTEX B
journal, January 2010

  • Bergstrom, R. W.; Schmidt, K. S.; Coddington, O.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 13
  • DOI: 10.5194/acp-10-6333-2010

Laboratory-Measured Optical Properties of Inorganic and Organic Aerosols at Relative Humidities up to 95%
journal, February 2012

  • Brem, Benjamin T.; Mena Gonzalez, Francisco C.; Meyers, Scott R.
  • Aerosol Science and Technology, Vol. 46, Issue 2
  • DOI: 10.1080/02786826.2011.617794

Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5)
journal, January 2018

  • Brown, Hunter; Liu, Xiaohong; Feng, Yan
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 24
  • DOI: 10.5194/acp-18-17745-2018

Radiometric validation of NASA’s Ames Research Center’s Sensor Calibration Laboratory
journal, January 2005

  • Brown, Steven W.; Johnson, B. Carol; Biggar, Stuart F.
  • Applied Optics, Vol. 44, Issue 30
  • DOI: 10.1364/AO.44.006426

Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing
journal, January 2008

  • Chand, D.; Anderson, T. L.; Wood, R.
  • Journal of Geophysical Research, Vol. 113, Issue D13
  • DOI: 10.1029/2007JD009433

Satellite-derived direct radiative effect of aerosols dependent on cloud cover
journal, February 2009

  • Chand, D.; Wood, R.; Anderson, T. L.
  • Nature Geoscience, Vol. 2, Issue 3
  • DOI: 10.1038/ngeo437

Aerosols and Climate
journal, January 1974


Above-Cloud Aerosol Radiative Effects based on ORACLES 2016 and ORACLES 2017 Aircraft Experiments
journal, April 2019

  • Cochrane, Sabrina P.; Schmidt, K. Sebastian; Chen, Hong
  • Atmospheric Measurement Techniques Discussions
  • DOI: 10.5194/amt-2019-125

The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing
journal, January 2013

  • Diner, D. J.; Xu, F.; Garay, M. J.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 8
  • DOI: 10.5194/amt-6-2007-2013

A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements
journal, August 2000

  • Dubovik, Oleg; King, Michael D.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D16
  • DOI: 10.1029/2000JD900282

Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology
journal, August 2013

  • Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony
  • Remote Sensing, Vol. 5, Issue 8
  • DOI: 10.3390/rs5083872

Large simulated radiative effects of smoke in the south-east Atlantic
journal, January 2018

  • Gordon, Hamish; Field, Paul R.; Abel, Steven J.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
  • DOI: 10.5194/acp-18-15261-2018

Influence of relative humidity upon pollution and dust during ACE-Asia: Size distributions and implications for optical properties
journal, January 2006

  • Howell, S. G.; Clarke, A. D.; Shinozuka, Y.
  • Journal of Geophysical Research, Vol. 111, Issue D6
  • DOI: 10.1029/2004JD005759

How do A-train sensors intercompare in the retrieval of above-cloud aerosol optical depth? A case study-based assessment: A-TRAIN ABOVE-CLOUD AEROSOL OPTICAL DEPTH
journal, January 2014

  • Jethva, Hiren; Torres, Omar; Waquet, Fabien
  • Geophysical Research Letters, Vol. 41, Issue 1
  • DOI: 10.1002/2013GL058405

Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors
journal, January 2019

  • Kacenelenbogen, Meloë S.; Vaughan, Mark A.; Redemann, Jens
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 7
  • DOI: 10.5194/acp-19-4933-2019

Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign
journal, January 2011

  • Knobelspiesse, K.; Cairns, B.; Redemann, J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 13
  • DOI: 10.5194/acp-11-6245-2011

Black carbon semi-direct effects on cloud cover: review and synthesis
journal, January 2010


Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide
journal, January 2017

  • Konovalov, Igor B.; Beekmann, Matthias; Berezin, Evgeny V.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 7
  • DOI: 10.5194/acp-17-4513-2017

Bias in Filter-Based Aerosol Light Absorption Measurements Due to Organic Aerosol Loading: Evidence from Ambient Measurements
journal, October 2008

  • Lack, Daniel A.; Cappa, Christopher D.; Covert, David S.
  • Aerosol Science and Technology, Vol. 42, Issue 12
  • DOI: 10.1080/02786820802389277

A synthesis of single scattering albedo of biomass burning aerosol over southern Africa during SAFARI 2000
journal, January 2007

  • Leahy, L. V.; Anderson, T. L.; Eck, T. F.
  • Geophysical Research Letters, Vol. 34, Issue 12
  • DOI: 10.1029/2007GL029697

Above Cloud Aerosol Optical Depth from airborne observations in the South-East Atlantic
journal, January 2019

  • LeBlanc, Samuel E.; Redemann, Jens; Flynn, Connor
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2019-43

Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies: SINGLE SCATTERING ALBEDO OF BB AEROSOL
journal, January 2014

  • Liu, Shang; Aiken, Allison C.; Arata, Caleb
  • Geophysical Research Letters, Vol. 41, Issue 2
  • DOI: 10.1002/2013GL058392

Evaluation of CALIOP 532 nm aerosol optical depth over opaque water clouds
journal, January 2015


Biomass smoke from southern Africa can significantly enhance the brightness of stratocumulus over the southeastern Atlantic Ocean
journal, March 2018

  • Lu, Zheng; Liu, Xiaohong; Zhang, Zhibo
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 12
  • DOI: 10.1073/pnas.1713703115

Effects of humidity on aerosols in southern Africa during the biomass burning season: HUMIDITY EFFECTS ON AEROSOLS IN AFRICA
journal, April 2003

  • Magi, Brian I.; Hobbs, Peter V.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D13
  • DOI: 10.1029/2002JD002144

The scale problem in quantifying aerosol indirect effects
journal, January 2012


Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns
journal, January 2011

  • McNaughton, C. S.; Clarke, A. D.; Freitag, S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-7561-2011

Optical properties of soot–water drop agglomerates: An experimental study
journal, January 2006

  • Mikhailov, E. F.; Vlasenko, S. S.; Podgorny, I. A.
  • Journal of Geophysical Research, Vol. 111, Issue D7
  • DOI: 10.1029/2005JD006389

Solar spectral radiative forcing during the Southern African Regional Science Initiative: SOLAR SPECTRAL RADIATIVE FORCING DURING SAFARI
journal, March 2003

  • Pilewskie, P.; Pommier, J.; Bergstrom, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D13
  • DOI: 10.1029/2002JD002411

Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC / OC for aerosol emissions from biomass burning
journal, January 2016

  • Pokhrel, Rudra P.; Wagner, Nick L.; Langridge, Justin M.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 15
  • DOI: 10.5194/acp-16-9549-2016

Retrieval of aerosol optical thickness and size distribution from the CIMEL Sun photometer over Inhaca Island, Mozambique: AOT OVER INHACA ISLAND, MOZAMBIQUE
journal, July 2003

  • Queface, Antonio J.; Piketh, Stuart J.; Annegarn, Harold J.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D13
  • DOI: 10.1029/2002JD002374

Dependence of aerosol light absorption and single-scattering albedo on ambient relative humidity for sulfate aerosols with black carbon cores
journal, November 2001

  • Redemann, Jens; Russell, Philip B.; Hamill, Patrick
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D21
  • DOI: 10.1029/2001JD900231

Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition
journal, January 2010

  • Russell, P. B.; Bergstrom, R. W.; Shinozuka, Y.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 3
  • DOI: 10.5194/acp-10-1155-2010

Direct and semidirect aerosol effects of southern African biomass burning aerosol
journal, January 2011

  • Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.
  • Journal of Geophysical Research, Vol. 116, Issue D12
  • DOI: 10.1029/2010JD015540

Intercomparison of aerosol single-scattering albedo derived from AERONET surface radiometers and LARGE in situ aircraft profiles during the 2011 DRAGON-MD and DISCOVER-AQ experiments
journal, June 2014

  • Schafer, J. S.; Eck, T. F.; Holben, B. N.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 12
  • DOI: 10.1002/2013JD021166

Coordinated airborne, spaceborne, and ground-based measurements of massive thick aerosol layers during the dry season in southern Africa: THICK AEROSOL LAYERS IN SOUTHERN AFRICA
journal, April 2003

  • Schmid, B.; Redemann, J.; Russell, P. B.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D13
  • DOI: 10.1029/2002JD002297

A new method for deriving aerosol solar radiative forcing and its first application within MILAGRO/INTEX-B
journal, January 2010

  • Schmidt, K. S.; Pilewskie, P.; Bergstrom, R.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 16
  • DOI: 10.5194/acp-10-7829-2010

Absorption amplification of black carbon internally mixed with secondary organic aerosol
journal, January 2005


Real-time detection of ambient aerosols using photothermal interferometry: Folded Jamin interferometer
journal, June 2006

  • Sedlacek, Arthur J.
  • Review of Scientific Instruments, Vol. 77, Issue 6
  • DOI: 10.1063/1.2205623

Photothermal Interferometric Aerosol Absorption Spectrometry
journal, November 2007


Tracking elevated pollution layers with a newly developed hyperspectral Sun/Sky spectrometer (4STAR): Results from the TCAP 2012 and 2013 campaigns: Tracking elevated pollution layers
journal, March 2014

  • Segal-Rosenheimer, M.; Russell, P. B.; Schmid, B.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 5
  • DOI: 10.1002/2013JD020884

Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations
journal, November 2018

  • Segal-Rozenhaimer, Michal; Miller, Daniel J.; Knobelspiesse, Kirk
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 220
  • DOI: 10.1016/j.jqsrt.2018.08.030

Hyperspectral aerosol optical depths from TCAP flights: HYPERSPECTRAL AOD FROM TCAP FLIGHTS
journal, November 2013

  • Shinozuka, Y.; Johnson, R. R.; Flynn, C. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 21
  • DOI: 10.1002/2013JD020596

Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000): AFRICA BURNING, SAFARI 2000
journal, July 2003

  • Swap, Robert J.; Annegarn, Harold J.; Suttles, J. Timothy
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D13
  • DOI: 10.1029/2003JD003747

Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies
journal, March 2012

  • Torres, Omar; Jethva, Hiren; Bhartia, P. K.
  • Journal of the Atmospheric Sciences, Vol. 69, Issue 3
  • DOI: 10.1175/JAS-D-11-0130.1

Pollution and the planetary albedo
journal, December 1974


Rapid changes in biomass burning aerosols by atmospheric oxidation: RAPID CHANGES IN BIOMASS BURNING PLUMES
journal, April 2014

  • Vakkari, Ville; Kerminen, Veli-Matti; Beukes, Johan Paul
  • Geophysical Research Letters, Vol. 41, Issue 7
  • DOI: 10.1002/2014GL059396

Correction of the Calibration of the 3-wavelength Particle Soot Absorption Photometer (3λ PSAP)
journal, June 2010


Deriving brown carbon from multiwavelength absorption measurements: method and application to AERONET and Aethalometer observations
journal, January 2016

  • Wang, Xuan; Heald, Colette L.; Sedlacek, Arthur J.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 19
  • DOI: 10.5194/acp-16-12733-2016

Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements
journal, January 2013

  • Waquet, F.; Cornet, C.; Deuzé, J. -L.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 4
  • DOI: 10.5194/amt-6-991-2013

Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol
journal, January 2010


Direct and semi-direct radiative forcing of smoke aerosols over clouds
journal, January 2012


Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)
journal, March 2018

  • Xu, Feng; van Harten, Gerard; Diner, David J.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 6
  • DOI: 10.1002/2017JD027926

A Correlated Multi-Pixel Inversion Approach for Aerosol Remote Sensing
journal, March 2019

  • Xu, Feng; Diner, David; Dubovik, Oleg
  • Remote Sensing, Vol. 11, Issue 7
  • DOI: 10.3390/rs11070746

Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing
journal, July 2008

  • Zhang, R.; Khalizov, A. F.; Pagels, J.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 30
  • DOI: 10.1073/pnas.0804860105

Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations
journal, January 2016

  • Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 5
  • DOI: 10.5194/acp-16-2877-2016

Smoke and Clouds above the Southeast Atlantic: Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate
journal, July 2016

  • Zuidema, Paquita; Redemann, Jens; Haywood, James
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 7
  • DOI: 10.1175/BAMS-D-15-00082.1

The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky
journal, May 2018

  • Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor
  • Geophysical Research Letters, Vol. 45, Issue 9
  • DOI: 10.1002/2017GL076926