skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the nature of active sites for formic acid decomposition on gold catalysts

Abstract

Formic acid decomposition has been studied experimentally on supported gold nanoparticles with strong evidence showing the critical role of gold clusters in the subnanometer range in catalyzing the reaction. However, there is a lack of theoretical studies capable of explaining these experimental observations. In this work, without accounting for support effects, vapor phase formic acid decomposition was studied systematically on sub-nanometric gold clusters from Au4 to Au25, among which several candidate Au clusters were identified as a promising active site model for the Au/SiC catalysts. Combining theoretical and experimental results suggested that the active site on Au/SiC catalysts could be represented by an Au18 cluster, on which the reaction rates calculated from the microkinetic model closely match the experimentally measured rates. On Au18, formic acid decomposition proceeds through the same formate mediated pathway as that on extended Au surfaces (HCOOH → HCOO + H → CO2 + 2H → CO2 + H2), with the reaction taking place on a triangular Au3 site where the reactive Au atoms have a coordination number of 5. Despite the fact that other Au clusters among those studied, including Au17 and Au19 which also expose the same triangular Au3 site, they were not found tomore » be an accurate representation of the active sites, suggesting an atom-specific activity of gold clusters for formic acid decomposition.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Wisconsin, Madison, WI (United States)
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1570852
Alternate Identifier(s):
OSTI ID: 1511504
Grant/Contract Number:  
FG02-05ER15731; AC02-06CH11357; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Catalysis Science and Technology
Additional Journal Information:
Journal Volume: 9; Journal Issue: 11; Journal ID: ISSN 2044-4753
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Li, Sha, Singh, Suyash, Dumesic, James A., and Mavrikakis, Manos. On the nature of active sites for formic acid decomposition on gold catalysts. United States: N. p., 2019. Web. doi:10.1039/c9cy00410f.
Li, Sha, Singh, Suyash, Dumesic, James A., & Mavrikakis, Manos. On the nature of active sites for formic acid decomposition on gold catalysts. United States. doi:10.1039/c9cy00410f.
Li, Sha, Singh, Suyash, Dumesic, James A., and Mavrikakis, Manos. Wed . "On the nature of active sites for formic acid decomposition on gold catalysts". United States. doi:10.1039/c9cy00410f. https://www.osti.gov/servlets/purl/1570852.
@article{osti_1570852,
title = {On the nature of active sites for formic acid decomposition on gold catalysts},
author = {Li, Sha and Singh, Suyash and Dumesic, James A. and Mavrikakis, Manos},
abstractNote = {Formic acid decomposition has been studied experimentally on supported gold nanoparticles with strong evidence showing the critical role of gold clusters in the subnanometer range in catalyzing the reaction. However, there is a lack of theoretical studies capable of explaining these experimental observations. In this work, without accounting for support effects, vapor phase formic acid decomposition was studied systematically on sub-nanometric gold clusters from Au4 to Au25, among which several candidate Au clusters were identified as a promising active site model for the Au/SiC catalysts. Combining theoretical and experimental results suggested that the active site on Au/SiC catalysts could be represented by an Au18 cluster, on which the reaction rates calculated from the microkinetic model closely match the experimentally measured rates. On Au18, formic acid decomposition proceeds through the same formate mediated pathway as that on extended Au surfaces (HCOOH → HCOO + H → CO2 + 2H → CO2 + H2), with the reaction taking place on a triangular Au3 site where the reactive Au atoms have a coordination number of 5. Despite the fact that other Au clusters among those studied, including Au17 and Au19 which also expose the same triangular Au3 site, they were not found to be an accurate representation of the active sites, suggesting an atom-specific activity of gold clusters for formic acid decomposition.},
doi = {10.1039/c9cy00410f},
journal = {Catalysis Science and Technology},
number = 11,
volume = 9,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Production of CO-free H2 from formic acid. A comparative study of the catalytic behavior of Pt metals on a carbon support
journal, April 2011


Shells of electrons in metal doped simple metal clusters
journal, June 2004

  • Janssens, Ewald; Neukermans, Sven; Lievens, Peter
  • Current Opinion in Solid State and Materials Science, Vol. 8, Issue 3-4
  • DOI: 10.1016/j.cossms.2004.09.002

Structure determination of gold clusters by trapped ion electron diffraction: Au14−–Au19−
journal, January 2009

  • Lechtken, Anne; Neiss, Christian; Kappes, Manfred M.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 21
  • DOI: 10.1039/b821036e

Decomposition and Reforming of Formic Acid on Supported Au Catalysts: Production of CO-Free H2
journal, July 2011

  • Gazsi, A.; Bánsági, T.; Solymosi, F.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 31, p. 15459-15466
  • DOI: 10.1021/jp203751w

Al 12 X (X = Ni, Pd, Pt, Ti, and Zr) Clusters: Promising Low-Cost and High-Activity Catalysts for CO Oxidation
journal, December 2013

  • Guo, Ling; Zhang, Xiao
  • The Journal of Physical Chemistry C, Vol. 118, Issue 1
  • DOI: 10.1021/jp4107074

Van der Waals density functionals applied to solids
journal, May 2011


Characterization of copper clusters through the use of density functional theory reactivity descriptors
journal, August 2002

  • Jaque, Pablo; Toro-Labbé, Alejandro
  • The Journal of Chemical Physics, Vol. 117, Issue 7
  • DOI: 10.1063/1.1493178

Catalysis by Gold Nanoparticles: Epoxidation of Propene
journal, June 2004


Support effect for nanosized Au catalysts in hydrogen production from formic acid decomposition
journal, January 2016

  • Zacharska, Monika; Chuvilin, Andrey L.; Kriventsov, Vladimir V.
  • Catalysis Science & Technology, Vol. 6, Issue 18
  • DOI: 10.1039/C6CY00552G

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Counting Au catalytic sites for the water–gas shift reaction
journal, September 2012


Density-functional study of Au n ( n = 2 2 0 ) clusters: Lowest-energy structures and electronic properties
journal, July 2002


On the Electronic and Atomic Structures of Small Au N - ( N = 4−14) Clusters:  A Photoelectron Spectroscopy and Density-Functional Study
journal, August 2003

  • Häkkinen, Hannu; Yoon, Bokwon; Landman, Uzi
  • The Journal of Physical Chemistry A, Vol. 107, Issue 32
  • DOI: 10.1021/jp035437i

Gold Atoms Stabilized on Various Supports Catalyze the Water–Gas Shift Reaction
journal, November 2013

  • Flytzani-Stephanopoulos, Maria
  • Accounts of Chemical Research, Vol. 47, Issue 3
  • DOI: 10.1021/ar4001845

Size-dependent catalytic activity of supported metal clusters
journal, November 1994

  • Xu, Z.; Xiao, F. -S.; Purnell, S. K.
  • Nature, Vol. 372, Issue 6504
  • DOI: 10.1038/372346a0

Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110)
journal, April 2004

  • Molina, L. M.; Rasmussen, M. D.; Hammer, B.
  • The Journal of Chemical Physics, Vol. 120, Issue 16
  • DOI: 10.1063/1.1687337

Structures of Neutral Au7, Au19, and Au20 Clusters in the Gas Phase
journal, August 2008


Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures
journal, June 2009

  • Ojeda, Manuel; Iglesia, Enrique
  • Angewandte Chemie International Edition, Vol. 48, Issue 26
  • DOI: 10.1002/anie.200805723

Gold—an introductory perspective
journal, January 2008

  • Hutchings, Graham J.; Brust, Mathias; Schmidbaur, Hubert
  • Chemical Society Reviews, Vol. 37, Issue 9
  • DOI: 10.1039/b810747p

Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen
journal, October 2010

  • Serrano-Ruiz, Juan Carlos; Braden, Drew J.; West, Ryan M.
  • Applied Catalysis B: Environmental, Vol. 100, Issue 1-2, p. 184-189
  • DOI: 10.1016/j.apcatb.2010.07.029

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Two-dimensional magic numbers in mass abundances of photofragmented bimetallic clusters
journal, January 2003


Theoretical Analysis of Transition-Metal Catalysts for Formic Acid Decomposition
journal, March 2014

  • Yoo, Jong Suk; Abild-Pedersen, Frank; Nørskov, Jens K.
  • ACS Catalysis, Vol. 4, Issue 4
  • DOI: 10.1021/cs400664z

Hydrogen-Promoted Oxygen Activation by Free Gold Cluster Cations
journal, July 2009

  • Lang, Sandra M.; Bernhardt, Thorsten M.; Barnett, Robert N.
  • Journal of the American Chemical Society, Vol. 131, Issue 25
  • DOI: 10.1021/ja9022368

Theoretical advances of the structures and catalytic activities of small-sized gold nanoclusters
journal, December 2013


Trends in the structure and bonding of noble metal clusters
journal, October 2004


General properties of the electronic structure of alkali metal clusters and Ia-IIa mixed clusters
journal, March 1989

  • Fantucci, P.; Bonačić-Koutecký, V.; Koutecký, J.
  • Zeitschrift für Physik D Atoms, Molecules and Clusters, Vol. 12, Issue 1-4
  • DOI: 10.1007/BF01426963

Odd-even alternation of global hardnesses in the Nan (n=2-9) clusters
journal, January 2000


Metallic Corner Atoms in Gold Clusters Supported on Rutile Are the Dominant Active Site during Water−Gas Shift Catalysis
journal, October 2010

  • Williams, W. Damion; Shekhar, Mayank; Lee, Wen-Sheng
  • Journal of the American Chemical Society, Vol. 132, Issue 40
  • DOI: 10.1021/ja1064262

A DFT Study of the CO Oxidation Mechanism on AlnAu (n = 1–12) Clusters
journal, January 2015


Au20: A Tetrahedral Cluster
journal, February 2003


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Structural Transition of Gold Nanoclusters: From the Golden Cage to the Golden Pyramid
journal, April 2009

  • Huang, Wei; Bulusu, Satya; Pal, Rhitankar
  • ACS Nano, Vol. 3, Issue 5
  • DOI: 10.1021/nn900232d

Atomically precise cluster catalysis towards quantum controlled catalysts
journal, December 2014


Some recent theoretical advances in the understanding of the catalytic activity of Au
journal, September 2005


CO oxidation on gold nanoparticles: Theoretical studies
journal, September 2005

  • Remediakis, Ioannis N.; Lopez, Nuria; Nørskov, Jens K.
  • Applied Catalysis A: General, Vol. 291, Issue 1-2
  • DOI: 10.1016/j.apcata.2005.01.052

Reaction-Relevant Gold Structures in the Low Temperature Water-Gas Shift Reaction on Au-CeO 2
journal, August 2008

  • Deng, Weiling; Frenkel, Anatoly I.; Si, Rui
  • The Journal of Physical Chemistry C, Vol. 112, Issue 33
  • DOI: 10.1021/jp800075y

Probing the electronic properties and structural evolution of anionic gold clusters in the gas phase
journal, January 2012


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory study
journal, November 2014

  • Herron, Jeffrey A.; Scaranto, Jessica; Ferrin, Peter
  • ACS Catalysis, Vol. 4, Issue 12
  • DOI: 10.1021/cs500737p

When Gold Is Not Noble: Catalysis by Nanoparticles
journal, April 2003


Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels
journal, February 2010


Structural Transitions from Pyramidal to Fused Planar to Tubular to Core/Shell Compact in Gold Clusters:  Au n - ( n = 21−25)
journal, February 2007

  • Bulusu, Satya; Li, Xi; Wang, Lai-Sheng
  • The Journal of Physical Chemistry C, Vol. 111, Issue 11
  • DOI: 10.1021/jp068897v

The use of titania- and iron oxide-supported gold catalysts for the hydrogenation of propyne
journal, September 2005


Structure and Surface Chemistry of Gold-Based Model Catalysts
journal, April 2011


Precision Synthesis of Subnanoparticles Using Dendrimers as a Superatom Synthesizer
journal, February 2014

  • Yamamoto, Kimihisa; Imaoka, Takane
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar400257s

Structural Evolution of Medium-Sized Gold Clusters Au n ( n = 36, 37, 38): Appearance of Bulk-Like Face Centered Cubic Fragment
journal, March 2014

  • Shao, Nan; Huang, Wei; Mei, Wai-Ning
  • The Journal of Physical Chemistry C, Vol. 118, Issue 13
  • DOI: 10.1021/jp500582t

Structural evolution of Au nanoclusters: From planar to cage to tubular motifs
journal, October 2006


Finding the Most Catalytically Active Platinum Clusters With Low Atomicity
journal, July 2015

  • Imaoka, Takane; Kitazawa, Hirokazu; Chun, Wang-Jae
  • Angewandte Chemie International Edition, Vol. 54, Issue 34
  • DOI: 10.1002/anie.201504473

First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties
journal, October 2006

  • Yang, M.; Jackson, K. A.; Jellinek, J.
  • The Journal of Chemical Physics, Vol. 125, Issue 14
  • DOI: 10.1063/1.2351818

Improved tetrahedron method for Brillouin-zone integrations
journal, June 1994


Mechanism of Methanol Synthesis on Cu through CO 2 and CO Hydrogenation
journal, February 2011

  • Grabow, L. C.; Mavrikakis, M.
  • ACS Catalysis, Vol. 1, Issue 4
  • DOI: 10.1021/cs200055d

Catalytic Activities of Subnanometer Gold Clusters (Au 16 –Au 18 , Au 20 , and Au 27 –Au 35 ) for CO Oxidation
journal, September 2011


Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters
journal, February 2012

  • Tsukuda, Tatsuya
  • Bulletin of the Chemical Society of Japan, Vol. 85, Issue 2
  • DOI: 10.1246/bcsj.20110227

Size- and Structure-specificity in Catalysis by Gold Clusters
journal, April 2014

  • Taketoshi, Ayako; Haruta, Masatake
  • Chemistry Letters, Vol. 43, Issue 4
  • DOI: 10.1246/cl.131232

Advances in the catalysis of Au nanoparticles
journal, December 2001


Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO2 Surfaces
journal, November 2009


Cu4 Cluster Doped Monolayer MoS2 for CO Oxidation
journal, June 2015

  • Chen, Z. W.; Yan, J. M.; Zheng, W. T.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11230

Determining the size-dependent structure of ligand-free gold-cluster ions
journal, March 2010

  • Schooss, Detlef; Weis, Patrick; Hampe, Oliver
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1915
  • DOI: 10.1098/rsta.2009.0269

Low temperature water gas shift over gold catalysts
journal, September 2002


Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions
journal, January 2010

  • Yi, Nan; Si, Rui; Saltsburg, Howard
  • Energy & Environmental Science, Vol. 3, Issue 6
  • DOI: 10.1039/b924051a

Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid
journal, January 2011

  • Braden, Drew J.; Henao, Carlos A.; Heltzel, Jacob
  • Green Chemistry, Vol. 13, Issue 7
  • DOI: 10.1039/c1gc15047b

Catalytic activity of Au nanoparticles
journal, August 2007


Heterogeneous Gold-Based Catalysis for Green Chemistry:  Low-Temperature CO Oxidation and Propene Oxidation
journal, June 2007

  • Min, Byoung Koun; Friend, Cynthia M.
  • Chemical Reviews, Vol. 107, Issue 6
  • DOI: 10.1021/cr050954d

Atomic Resolution Observation of a Size-Dependent Change in the Ripening Modes of Mass-Selected Au Nanoclusters Involved in CO Oxidation
journal, November 2015

  • Hu, Kuo-Juei; Plant, Simon R.; Ellis, Peter R.
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b08720

A golden age of catalysis: A perspective
journal, September 2005


Kinetic Control and Thermodynamic Selection in the Synthesis of Atomically Precise Gold Nanoclusters
journal, June 2011

  • Wu, Zhikun; MacDonald, Mark A.; Chen, Jenny
  • Journal of the American Chemical Society, Vol. 133, Issue 25
  • DOI: 10.1021/ja2028102

Formic acid decomposition on Au catalysts: DFT, microkinetic modeling, and reaction kinetics experiments
journal, February 2014

  • Singh, Suyash; Li, Sha; Carrasquillo-Flores, Ronald
  • AIChE Journal, Vol. 60, Issue 4
  • DOI: 10.1002/aic.14401

DFT and In Situ EXAFS Investigation of Gold/Ceria−Zirconia Low-Temperature Water Gas Shift Catalysts:  Identification of the Nature of the Active Form of Gold
journal, December 2005

  • Tibiletti, D.; Fonseca, A. Amieiro-; Burch, R.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 47
  • DOI: 10.1021/jp054576s

2D-3D transition of gold cluster anions resolved
journal, May 2008


A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces
journal, January 2011

  • Watanabe, Yoshihide; Wu, Xingyang; Hirata, Hirohito
  • Catalysis Science & Technology, Vol. 1, Issue 8, p. 1490-1495
  • DOI: 10.1039/c1cy00204j

Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts
journal, December 2013

  • Widmann, D.; Behm, R. J.
  • Accounts of Chemical Research, Vol. 47, Issue 3
  • DOI: 10.1021/ar400203e

Magic Number Pt 13 and Misshapen Pt 12 Clusters: Which One is the Better Catalyst?
journal, August 2013

  • Imaoka, Takane; Kitazawa, Hirokazu; Chun, Wang-Jae
  • Journal of the American Chemical Society, Vol. 135, Issue 35
  • DOI: 10.1021/ja405922m

Size and Support Effects for the Water–Gas Shift Catalysis over Gold Nanoparticles Supported on Model Al 2 O 3 and TiO 2
journal, February 2012

  • Shekhar, Mayank; Wang, Jun; Lee, Wen-Sheng
  • Journal of the American Chemical Society, Vol. 134, Issue 10
  • DOI: 10.1021/ja210083d

Relationship between Ionization Potential, Polarizability, and Softness:  A Case Study of Lithium and Sodium Metal Clusters
journal, August 2004

  • Chandrakumar, K. R. S.; Ghanty, Tapan K.; Ghosh, Swapan K.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 32
  • DOI: 10.1021/jp048522e

Analysis of the odd-even alternation in simple metal clusters
journal, June 1996

  • Gr�nbeck, H.; Ros�n, A.
  • Zeitschrift f�r Physik D Atoms, Molecules and Clusters, Vol. 36, Issue 2
  • DOI: 10.1007/BF01426630

CO Oxidation on Au n /TiO 2 Catalysts Produced by Size-Selected Cluster Deposition
journal, May 2004

  • Lee, Sungsik; Fan, Chaoyang; Wu, Tianpin
  • Journal of the American Chemical Society, Vol. 126, Issue 18
  • DOI: 10.1021/ja049436v

Trends in the Catalytic CO Oxidation Activity of Nanoparticles
journal, June 2008

  • Falsig, Hanne; Hvolbæk, Britt; Kristensen, Iben S.
  • Angewandte Chemie International Edition, Vol. 47, Issue 26
  • DOI: 10.1002/anie.200801479

Size-Dependent Structural Evolution and Chemical Reactivity of Gold Clusters
journal, January 2007


A Schiff base modified gold catalyst for green and efficient H 2 production from formic acid
journal, January 2015

  • Liu, Qinggang; Yang, Xiaofeng; Huang, Yanqiang
  • Energy & Environmental Science, Vol. 8, Issue 11
  • DOI: 10.1039/C5EE02506K

Pd Clusters Supported on Amorphous, Low-Porosity Carbon Spheres for Hydrogen Production from Formic Acid
journal, April 2015

  • Bulushev, Dmitri A.; Bulusheva, Lyubov G.; Beloshapkin, Sergey
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 16
  • DOI: 10.1021/acsami.5b00983

Selective Hydrogenation of Acetylene over Au/Al 2 O 3 Catalyst
journal, November 2000

  • Jia, Jifei; Haraki, Kenta; Kondo, Junko N.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 47
  • DOI: 10.1021/jp001213d

Hydrogen from formic acid decomposition over Pd and Au catalysts
journal, September 2010


Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C
journal, February 1987

  • Haruta, Masatake; Kobayashi, Tetsuhiko; Sano, Hiroshi
  • Chemistry Letters, Vol. 16, Issue 2
  • DOI: 10.1246/cl.1987.405

The Important Role of Hydroxyl on Oxidation Catalysis by Gold Nanoparticles
journal, November 2013

  • Ide, Matthew S.; Davis, Robert J.
  • Accounts of Chemical Research, Vol. 47, Issue 3
  • DOI: 10.1021/ar4001907

Evolution of Small Copper Clusters and Dissociative Chemisorption of Hydrogen
journal, January 2005


Decomposition of formic acid over silica encapsulated and amine functionalised gold nanoparticles
journal, January 2017


Accurate and simple analytic representation of the electron-gas correlation energy
journal, June 1992


Atomically Dispersed Au–(OH) x Species Bound on Titania Catalyze the Low-Temperature Water-Gas Shift Reaction
journal, March 2013

  • Yang, Ming; Allard, Lawrence F.; Flytzani-Stephanopoulos, Maria
  • Journal of the American Chemical Society, Vol. 135, Issue 10
  • DOI: 10.1021/ja312646d

Far-IR Spectra of Small Neutral Gold Clusters in the Gas Phase
journal, January 2014

  • Gruene, Philipp; Butschke, Burkhard; Lyon, Jonathan T.
  • Zeitschrift für Physikalische Chemie, Vol. 228, Issue 4-5
  • DOI: 10.1515/zpch-2014-0480

The critical role of water at the gold-titania interface in catalytic CO oxidation
journal, September 2014


Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions
journal, July 2009

  • Yamamoto, Kimihisa; Imaoka, Takane; Chun, Wang-Jae
  • Nature Chemistry, Vol. 1, Issue 5
  • DOI: 10.1038/nchem.288

CO Oxidation on TiO 2 (110) Supported Subnanometer Gold Clusters: Size and Shape Effects
journal, December 2013

  • Li, Lei; Gao, Yi; Li, Hui
  • Journal of the American Chemical Society, Vol. 135, Issue 51
  • DOI: 10.1021/ja410292s

Gas-phase epoxidation of propylene over small gold ensembles on TS-1
journal, September 2005


Hydrogen Production by Dehydrogenation of Formic Acid on Atomically Dispersed Gold on Ceria
journal, March 2013

  • Yi, Nan; Saltsburg, Howard; Flytzani-Stephanopoulos, Maria
  • ChemSusChem, Vol. 6, Issue 5
  • DOI: 10.1002/cssc.201200957

The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations
journal, October 2002

  • Furche, Filipp; Ahlrichs, Reinhart; Weis, Patrick
  • The Journal of Chemical Physics, Vol. 117, Issue 15
  • DOI: 10.1063/1.1507582

Odd-even staggering in simple models of metal clusters
journal, December 1994

  • Manninen, M.; Mansikka-aho, J.; Nishioka, H.
  • Zeitschrift f�r Physik D Atoms, Molecules and Clusters, Vol. 31, Issue 4
  • DOI: 10.1007/BF01445004

CO Oxidation on Rutile-Supported Au Nanoparticles
journal, February 2005

  • Remediakis, Ioannis N.; Lopez, Nuria; Nørskov, Jens K.
  • Angewandte Chemie International Edition, Vol. 44, Issue 12
  • DOI: 10.1002/anie.200461699

Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions
journal, May 2012

  • Bi, Qing-Yuan; Du, Xian-Long; Liu, Yong-Mei
  • Journal of the American Chemical Society, Vol. 134, Issue 21
  • DOI: 10.1021/ja301696e

Thiolate-Mediated Selectivity Control in Aerobic Alcohol Oxidation by Porous Carbon-Supported Au 25 Clusters
journal, September 2014

  • Yoskamtorn, Tatchamapan; Yamazoe, Seiji; Takahata, Ryo
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs501010x

A DFT-Based Study of the Low-Energy Electronic Structures and Properties of Small Gold Clusters
journal, August 2005


Ultraviolet photoelectron spectra of coinage metal clusters
journal, February 1992

  • Taylor, K. J.; Pettiette‐Hall, C. L.; Cheshnovsky, O.
  • The Journal of Chemical Physics, Vol. 96, Issue 4
  • DOI: 10.1063/1.461927

CO oxidation mechanism on a MgO(1 0 0) supported Pt x Au 3−x clusters
journal, November 2015


A Critical Size for Emergence of Nonbulk Electronic and Geometric Structures in Dodecanethiolate-Protected Au Clusters
journal, January 2015

  • Negishi, Yuichi; Nakazaki, Tafu; Malola, Sami
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja5109968

Trends in the Catalytic CO Oxidation Activity of Nanoparticles
journal, June 2008

  • Falsig, Hanne; Hvolbæk, Britt; Kristensen, Iben S.
  • Angewandte Chemie, Vol. 120, Issue 26
  • DOI: 10.1002/ange.200801479