Simulation of the 2003 Foss Barge - Point Wells Oil Spill: A Comparison between BLOSOM and GNOME Oil Spill Models
- National Energy Technology Lab. (NETL), Albany, OR (United States); Theiss Research, San Diego, CA (United States)
- National Energy Technology Lab. (NETL), Albany, OR (United States); AECOM, South Park, PA (United States)
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
- National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education, Oak Ridge, TN (United States)
- National Energy Technology Lab. (NETL), Albany, OR (United States)
The Department of Energy’s (DOE’s) National Energy Technology Laboratory’s (NETL’s) Blowout and Spill Occurrence Model (BLOSOM), and the National Oceanic and Atmospheric Administration’s (NOAA’s) General NOAA Operational Modeling Environment (GNOME) are compared. Increasingly complex simulations are used to assess similarities and differences between the two models’ components. The simulations presented here are forced by ocean currents from a Finite Volume Community Ocean Model (FVCOM) implementation that has excellent skill in representing tidal motion, and with observed wind data that compensates for a coarse vertical ocean model resolution. The comprehensive comparison between GNOME and BLOSOM presented here, should aid modelers in interpreting their results. Beyond many similarities, aspects where both models are distinct are highlighted. Some suggestions for improvement are included, e.g., the inclusion of temporal interpolation of the forcing fields (BLOSOM) or the inclusion of a deflection angle option when parameterizing wind-driven processes (GNOME). Overall, GNOME and BLOSOM perform similarly, and are found to be complementary oil spill models. This paper also sheds light on what drove the historical Point Wells spill, and serves the additional purpose of being a learning resource for those interested in oil spill modeling. The increasingly complex approach used for the comparison is also used, in parallel, to illustrate the approach an oil spill modeler would typically follow when trying to hindcast or forecast an oil spill, including detailed technical information on basic aspects, like choosing a computational time step. We discuss our successful hindcast of the 2003 Point Wells oil spill that, to our knowledge, had remained unexplained. The oil spill models’ solutions are compared to the historical Point Wells’ oil trajectory, in time and space, as determined from overflight information. Our hindcast broadly replicates the correct locations at the correct times, using accurate tide and wind forcing. While the choice of wind coefficient we use is unconventional, a simplified analytic model supported by observations, suggests that it is justified under this study’s circumstances. We highlight some of the key oceanographic findings as they may relate to other oil spills, and to the regional oceanography of the Salish Sea, including recommendations for future studies.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC05-76RL01830
- OSTI ID:
- 1570703
- Report Number(s):
- PNNL-SA-135644
- Journal Information:
- Journal of Marine Science and Engineering, Vol. 6, Issue 3; ISSN 2077-1312
- Publisher:
- MDPICopyright Statement
- Country of Publication:
- United States
- Language:
- English
Multi-Criteria Analysis of Different Approaches to Protect the Marine and Coastal Environment from Oil Spills
|
journal | October 2018 |
Oil spill modeling: Mapping the knowledge domain
|
journal | January 2020 |
Similar Records
Development of a Hydrodynamic Model of Puget Sound and Northwest Straits
Approach for assessing coastal vulnerability to oil spills for prevention and readiness using GIS and the Blowout and Spill Occurrence Model