A New Model for Electron-capture Supernovae in Galactic Chemical Evolution
Abstract
We examine the contribution of electron-capture supernovae (ECSNe), low-mass SNe from collapsing Fe cores (FeCCSNe), and rotating massive stars to the chemical composition of the Galaxy. Our model includes contributions to chemical evolution from both thermonuclear ECSNe (tECSNe) and gravitational collapse ECSNe (cECSNe). We show that if ECSNe are predominantly gravitational collapse SNe but about 15% are partial thermonuclear explosions, the model is able to reproduce the solar abundances of several important and problematic isotopes including $${}^{48}\mathrm{Ca}$$, $${}^{50}\mathrm{Ti}$$, and 54Cr together with 58Fe, 64Ni, 82Se, and 86Kr and several of the Zn–Zr isotopes. A model in which no cECSNe occur, only tECSNe with low-mass FeCCSNe or rotating massive stars, proves also very successful at reproducing the solar abundances for these isotopes. Despite the small mass range for the progenitors of ECSNe and low-mass FeCCSNe, the large production factors suffice for the solar inventory of the above isotopes. Our model is compelling because it introduces no new tensions with the solar abundance distribution for a Milky Way model—only tending to improve the model predictions for several isotopes. Here, the proposed astrophysical production model thus provides a natural and elegant way to explain one of the last uncharted territories on the periodic table of astrophysical element production.
- Authors:
-
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Hungarian Academy of Sciences, Budapest (Hungary); Michigan State Univ., East Lansing, MI (United States); Joint Institute for Nuclear Astrophysics—Center for the Evolution of the Elements, East Lansing, MI (United States)
- Zentrum für Astronomie der Univ. Heidelberg, Heidelberg (Germany); Heidelberg Inst. for Theoretical Studies, Heidelberg (Germany)
- Max Planck Inst. for Gravitational Physics (Albert Einstein Institute), Potsdam-Golm (Germany); Sophia Univ., Tokyo (Japan); RIKEN, Saitama (Japan)
- Publication Date:
- Research Org.:
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Sponsoring Org.:
- USDOE Laboratory Directed Research and Development (LDRD) Program
- OSTI Identifier:
- 1570629
- Report Number(s):
- LA-UR-19-25987
Journal ID: ISSN 1538-4357; TRN: US2100327
- Grant/Contract Number:
- 89233218CNA000001
- Resource Type:
- Accepted Manuscript
- Journal Name:
- The Astrophysical Journal (Online)
- Additional Journal Information:
- Journal Name: The Astrophysical Journal (Online); Journal Volume: 882; Journal Issue: 2; Journal ID: ISSN 1538-4357
- Publisher:
- Institute of Physics (IOP)
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 79 ASTRONOMY AND ASTROPHYSICS; nuclear reactions; nucleosynthesis; abundances; Sun: abundances; stars: evolution; supernovae: general; Galaxy: abundances
Citation Formats
Jones, Samuel, Côté, Benoit, Röpke, Friedrich K., and Wanajo, Shinya. A New Model for Electron-capture Supernovae in Galactic Chemical Evolution. United States: N. p., 2019.
Web. doi:10.3847/1538-4357/ab384e.
Jones, Samuel, Côté, Benoit, Röpke, Friedrich K., & Wanajo, Shinya. A New Model for Electron-capture Supernovae in Galactic Chemical Evolution. United States. doi:10.3847/1538-4357/ab384e.
Jones, Samuel, Côté, Benoit, Röpke, Friedrich K., and Wanajo, Shinya. Tue .
"A New Model for Electron-capture Supernovae in Galactic Chemical Evolution". United States. doi:10.3847/1538-4357/ab384e. https://www.osti.gov/servlets/purl/1570629.
@article{osti_1570629,
title = {A New Model for Electron-capture Supernovae in Galactic Chemical Evolution},
author = {Jones, Samuel and Côté, Benoit and Röpke, Friedrich K. and Wanajo, Shinya},
abstractNote = {We examine the contribution of electron-capture supernovae (ECSNe), low-mass SNe from collapsing Fe cores (FeCCSNe), and rotating massive stars to the chemical composition of the Galaxy. Our model includes contributions to chemical evolution from both thermonuclear ECSNe (tECSNe) and gravitational collapse ECSNe (cECSNe). We show that if ECSNe are predominantly gravitational collapse SNe but about 15% are partial thermonuclear explosions, the model is able to reproduce the solar abundances of several important and problematic isotopes including ${}^{48}\mathrm{Ca}$, ${}^{50}\mathrm{Ti}$, and 54Cr together with 58Fe, 64Ni, 82Se, and 86Kr and several of the Zn–Zr isotopes. A model in which no cECSNe occur, only tECSNe with low-mass FeCCSNe or rotating massive stars, proves also very successful at reproducing the solar abundances for these isotopes. Despite the small mass range for the progenitors of ECSNe and low-mass FeCCSNe, the large production factors suffice for the solar inventory of the above isotopes. Our model is compelling because it introduces no new tensions with the solar abundance distribution for a Milky Way model—only tending to improve the model predictions for several isotopes. Here, the proposed astrophysical production model thus provides a natural and elegant way to explain one of the last uncharted territories on the periodic table of astrophysical element production.},
doi = {10.3847/1538-4357/ab384e},
journal = {The Astrophysical Journal (Online)},
number = 2,
volume = 882,
place = {United States},
year = {2019},
month = {9}
}
Web of Science
Works referenced in this record:
48Ca Production in Matter Expanding from High Temperature and Density
journal, May 1996
- Meyer, Bradley S.; Krishnan, Tracy D.; Clayton, Donald D.
- The Astrophysical Journal, Vol. 462
The importance of Urca-process cooling in accreting ONe white dwarfs
journal, August 2017
- Schwab, Josiah; Bildsten, Lars; Quataert, Eliot
- Monthly Notices of the Royal Astronomical Society, Vol. 472, Issue 3
Ultra-stripped supernovae: progenitors and fate
journal, June 2015
- Tauris, Thomas M.; Langer, Norbert; Podsiadlowski, Philipp
- Monthly Notices of the Royal Astronomical Society, Vol. 451, Issue 2
Evolution of 8-10 solar mass stars toward electron capture supernovae. I - Formation of electron-degenerate O + NE + MG cores
journal, February 1984
- Nomoto, K.
- The Astrophysical Journal, Vol. 277
RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE
journal, June 2009
- Ruiter, Ashley J.; Belczynski, Krzysztof; Fryer, Chris
- The Astrophysical Journal, Vol. 699, Issue 2
Neutron‐rich Nucleosynthesis in Carbon Deflagration Supernovae
journal, February 1997
- Woosley, S. E.
- The Astrophysical Journal, Vol. 476, Issue 2
The Role of Electron Captures in Chandrasekhar‐Mass Models for Type Ia Supernovae
journal, June 2000
- Brachwitz, Franziska; Dean, David J.; Hix, W. Raphael
- The Astrophysical Journal, Vol. 536, Issue 2
Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae
journal, December 2012
- Seitenzahl, Ivo R.; Ciaraldi-Schoolmann, Franco; Röpke, Friedrich K.
- Monthly Notices of the Royal Astronomical Society, Vol. 429, Issue 2
Remnants and ejecta of thermonuclear electron-capture supernovae: Constraining oxygen-neon deflagrations in high-density white dwarfs
journal, January 2019
- Jones, S.; Röpke, F. K.; Fryer, C.
- Astronomy & Astrophysics, Vol. 622
Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae
journal, June 2019
- Raddi, R.; Hollands, M. A.; Koester, D.
- Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 2
Observational Clues to the Progenitors of Type Ia Supernovae
journal, August 2014
- Maoz, Dan; Mannucci, Filippo; Nelemans, Gijs
- Annual Review of Astronomy and Astrophysics, Vol. 52, Issue 1
Electron Capture Supernovae from Close Binary Systems
journal, December 2017
- Poelarends, Arend J. T.; Wurtz, Scott; Tarka, James
- The Astrophysical Journal, Vol. 850, Issue 2
EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE
journal, August 2015
- Cristallo, S.; Straniero, O.; Piersanti, L.
- The Astrophysical Journal Supplement Series, Vol. 219, Issue 2
Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range −3 ≤ [Fe/H] ≤ 0
journal, July 2018
- Limongi, Marco; Chieffi, Alessandro
- The Astrophysical Journal Supplement Series, Vol. 237, Issue 1
ELECTRON-CAPTURE SUPERNOVAE AS ORIGIN OF 48 Ca
journal, April 2013
- Wanajo, Shinya; Janka, Hans-Thomas; Müller, Bernhard
- The Astrophysical Journal, Vol. 767, Issue 2
On the formation of neutron stars via accretion-induced collapse in binaries
journal, January 2019
- Ruiter, A. J.; Ferrario, L.; Belczynski, K.
- Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 1
Validating Semi-analytic Models of High-redshift Galaxy Formation Using Radiation Hydrodynamical Simulations
journal, May 2018
- Côté, Benoit; Silvia, Devin W.; O’Shea, Brian W.
- The Astrophysical Journal, Vol. 859, Issue 1
Do electron-capture supernovae make neutron stars?: First multidimensional hydrodynamic simulations of the oxygen deflagration
journal, September 2016
- Jones, S.; Röpke, F. K.; Pakmor, R.
- Astronomy & Astrophysics, Vol. 593
Case A and B evolution towards electron capture supernova
journal, June 2018
- Siess, L.; Lebreuilly, U.
- Astronomy & Astrophysics, Vol. 614
Nucleosynthesis and Evolution of Massive Metal-Free Stars
journal, November 2010
- Heger, Alexander; Woosley, S. E.
- The Astrophysical Journal, Vol. 724, Issue 1
Chemical evolution with rotating massive star yields – I. The solar neighbourhood and the s-process elements
journal, February 2018
- Prantzos, N.; Abia, C.; Limongi, M.
- Monthly Notices of the Royal Astronomical Society, Vol. 476, Issue 3
SYGMA: Stellar Yields for Galactic Modeling Applications
journal, August 2018
- Ritter, Christian; Côté, Benoit; Herwig, Falk
- The Astrophysical Journal Supplement Series, Vol. 237, Issue 2
Super- and massive AGB stars – IV. Final fates – initial-to-final mass relation
journal, November 2014
- Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel
- Monthly Notices of the Royal Astronomical Society, Vol. 446, Issue 3
On the variation of the initial mass function
journal, April 2001
- Kroupa, P.
- Monthly Notices of the Royal Astronomical Society, Vol. 322, Issue 2
Evolution of 8-10 solar mass stars toward electron capture supernovae. II - Collapse of an O + NE + MG core
journal, November 1987
- Nomoto, Ken'ichi
- The Astrophysical Journal, Vol. 322
Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies
journal, August 2013
- Nomoto, Ken'ichi; Kobayashi, Chiaki; Tominaga, Nozomu
- Annual Review of Astronomy and Astrophysics, Vol. 51, Issue 1
Evolution of Asymptotic Giant Branch Stars
journal, September 2005
- Herwig, Falk
- Annual Review of Astronomy and Astrophysics, Vol. 43, Issue 1
The Supernova Channel of Super‐AGB Stars
journal, March 2008
- Poelarends, A. J. T.; Herwig, F.; Langer, N.
- The Astrophysical Journal, Vol. 675, Issue 1
Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation
journal, September 1999
- Busso, M.; Gallino, R.; Wasserburg, G. J.
- Annual Review of Astronomy and Astrophysics, Vol. 37, Issue 1
Electron-Capture Supernovae as the Origin of Elements Beyond iron
journal, December 2010
- Wanajo, Shinya; Janka, Hans-Thomas; Müller, Bernhard
- The Astrophysical Journal, Vol. 726, Issue 2
Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range in supernovae environments
journal, June 2000
- Langanke, K.; Martı́nez-Pinedo, G.
- Nuclear Physics A, Vol. 673, Issue 1-4
Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning‐Front Propagation
journal, December 1999
- Iwamoto, Koichi; Brachwitz, Franziska; Nomoto, Ken’ichi
- The Astrophysical Journal Supplement Series, Vol. 125, Issue 2
Multi-messenger Observations of a Binary Neutron Star Merger
journal, October 2017
- Abbott, B. P.; Abbott, R.; Abbott, T. D.
- The Astrophysical Journal, Vol. 848, Issue 2
Extremely 54 Cr- and 50 Ti-rich Presolar Oxide Grains in a Primitive Meteorite: Formation in Rare Types of Supernovae and Implications for the Astrophysical Context of Solar System Birth
journal, March 2018
- Nittler, Larry R.; Alexander, Conel M. O’D.; Liu, Nan
- The Astrophysical Journal, Vol. 856, Issue 2
The evolution and explosion of massive stars
journal, November 2002
- Woosley, S. E.; Heger, A.; Weaver, T. A.
- Reviews of Modern Physics, Vol. 74, Issue 4
Nucleosynthesis in the Innermost Ejecta of Neutrino-driven Supernova Explosions in Two Dimensions
journal, January 2018
- Wanajo, Shinya; Müller, Bernhard; Janka, Hans-Thomas
- The Astrophysical Journal, Vol. 852, Issue 1
The process: Nuclear physics, stellar models, and observations
journal, April 2011
- Käppeler, F.; Gallino, R.; Bisterzo, S.
- Reviews of Modern Physics, Vol. 83, Issue 1
Galactic Chemical Evolution of Radioactive Isotopes
journal, June 2019
- Côté, Benoit; Lugaro, Maria; Reifarth, Rene
- The Astrophysical Journal, Vol. 878, Issue 2
The Status of Multi-Dimensional Core-Collapse Supernova Models
journal, January 2016
- Müller, B.
- Publications of the Astronomical Society of Australia, Vol. 33
Zinc isotope anomalies
journal, July 1990
- Volkening, J.; Papanastassiou, D. A.
- The Astrophysical Journal, Vol. 358
On the collapse of 8-10 solar mass stars due to electron capture
journal, July 1987
- Miyaji, Shigeki; Nomoto, Ken'ichi
- The Astrophysical Journal, Vol. 318
Works referencing / citing this record:
Enrichment of Strontium in Dwarf Galaxies
journal, October 2019
- Hirai, Yutaka; Wanajo, Shinya; Saitoh, Takayuki R.
- The Astrophysical Journal, Vol. 885, Issue 1
The Pristine survey – IX. CFHT ESPaDOnS spectroscopic analysis of 115 bright metal-poor candidate stars
journal, December 2019
- Venn, Kim A.; Kielty, Collin L.; Sestito, Federico
- Monthly Notices of the Royal Astronomical Society, Vol. 492, Issue 3