skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on October 15, 2020

Title: Perspective on machine learning for advancing fluid mechanics

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1570536
Grant/Contract Number:  
NA0002374
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review Fluids
Additional Journal Information:
Journal Name: Physical Review Fluids Journal Volume: 4 Journal Issue: 10; Journal ID: ISSN 2469-990X
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Brenner, M. P., Eldredge, J. D., and Freund, J. B. Perspective on machine learning for advancing fluid mechanics. United States: N. p., 2019. Web. doi:10.1103/PhysRevFluids.4.100501.
Brenner, M. P., Eldredge, J. D., & Freund, J. B. Perspective on machine learning for advancing fluid mechanics. United States. doi:10.1103/PhysRevFluids.4.100501.
Brenner, M. P., Eldredge, J. D., and Freund, J. B. Wed . "Perspective on machine learning for advancing fluid mechanics". United States. doi:10.1103/PhysRevFluids.4.100501.
@article{osti_1570536,
title = {Perspective on machine learning for advancing fluid mechanics},
author = {Brenner, M. P. and Eldredge, J. D. and Freund, J. B.},
abstractNote = {},
doi = {10.1103/PhysRevFluids.4.100501},
journal = {Physical Review Fluids},
number = 10,
volume = 4,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 15, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Data-assisted reduced-order modeling of extreme events in complex dynamical systems
journal, May 2018


Efficient collective swimming by harnessing vortices through deep reinforcement learning
journal, May 2018

  • Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 23
  • DOI: 10.1073/pnas.1800923115

Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
journal, February 2018

  • Poplin, Ryan; Varadarajan, Avinash V.; Blumer, Katy
  • Nature Biomedical Engineering, Vol. 2, Issue 3
  • DOI: 10.1038/s41551-018-0195-0

Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
journal, July 2018


Machine learning the kinematics of spherical particles in fluid flows
journal, October 2018

  • Wan, Zhong Yi; Sapsis, Themistoklis P.
  • Journal of Fluid Mechanics, Vol. 857
  • DOI: 10.1017/jfm.2018.797

Machine learning-assisted early ignition prediction in a complex flow
journal, August 2019


Deep learning of vortex-induced vibrations
journal, December 2018

  • Raissi, Maziar; Wang, Zhicheng; Triantafyllou, Michael S.
  • Journal of Fluid Mechanics, Vol. 861
  • DOI: 10.1017/jfm.2018.872

Machine-aided turbulence theory
journal, August 2018


Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow
journal, February 2019


Long Short-Term Memory
journal, November 1997


Machine-Learning-Based Detection of Aerodynamic Disturbances Using Surface Pressure Measurements
journal, September 2019

  • Hou, Wei; Darakananda, Darwin; Eldredge, Jeff D.
  • AIAA Journal
  • DOI: 10.2514/1.J058486

Machine learning strategies for systems with invariance properties
journal, August 2016


Turbulence Modeling in the Age of Data
journal, January 2019


Super-resolution reconstruction of turbulent flows with machine learning
journal, May 2019

  • Fukami, Kai; Fukagata, Koji; Taira, Kunihiko
  • Journal of Fluid Mechanics, Vol. 870
  • DOI: 10.1017/jfm.2019.238

Machine Learning for Fluid Mechanics
journal, September 2019


Model Reduction for Flow Analysis and Control
journal, January 2017


Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
journal, March 2017


On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
journal, July 2015