DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamic Tuning of Gap Plasmon Resonances Using a Solid-State Electrochromic Device

Abstract

Plasmonic antennas and metasurfaces can effectively control light–matter interactions, and this facilitates a deterministic design of optical materials properties, including structural color. However, these optical properties are generally fixed after synthesis and fabrication, while many modern-day optics applications require active, low-power, and nonvolatile tuning. These needs have spurred broad research activities aimed at identifying materials and resonant structures capable of achieving large, dynamic changes in optical properties, especially in the challenging visible spectral range. In this work, we demonstrate dynamic tuning of polarization-dependent gap plasmon resonators that contain the electrochromic oxide WO3. Its refractive index in the visible changes continuously from n = 2.1 to 1.9 upon electrochemical lithium insertion and removal in a solid-state device. By incorporating WO3 into a gap plasmon resonator, the resonant wavelength can be shifted continuously and reversibly by up to 58 nm with less than 2 V electrochemical bias voltage. Lastly, the resonator can remain in a tuned state for tens of minutes under open circuit conditions.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [2]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  2. Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials
  3. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1570265
Report Number(s):
SAND-2019-11177J
Journal ID: ISSN 1530-6984; 679791; TRN: US2001386
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 19; Journal Issue: 11; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Electrochromic; gap plasmon; dynamic tuning; optical properties; nanophotonics

Citation Formats

Li, Yiyang, van de Groep, Jorik, Talin, A. Alec, and Brongersma, Mark L. Dynamic Tuning of Gap Plasmon Resonances Using a Solid-State Electrochromic Device. United States: N. p., 2019. Web. doi:10.1021/acs.nanolett.9b03143.
Li, Yiyang, van de Groep, Jorik, Talin, A. Alec, & Brongersma, Mark L. Dynamic Tuning of Gap Plasmon Resonances Using a Solid-State Electrochromic Device. United States. https://doi.org/10.1021/acs.nanolett.9b03143
Li, Yiyang, van de Groep, Jorik, Talin, A. Alec, and Brongersma, Mark L. Fri . "Dynamic Tuning of Gap Plasmon Resonances Using a Solid-State Electrochromic Device". United States. https://doi.org/10.1021/acs.nanolett.9b03143. https://www.osti.gov/servlets/purl/1570265.
@article{osti_1570265,
title = {Dynamic Tuning of Gap Plasmon Resonances Using a Solid-State Electrochromic Device},
author = {Li, Yiyang and van de Groep, Jorik and Talin, A. Alec and Brongersma, Mark L.},
abstractNote = {Plasmonic antennas and metasurfaces can effectively control light–matter interactions, and this facilitates a deterministic design of optical materials properties, including structural color. However, these optical properties are generally fixed after synthesis and fabrication, while many modern-day optics applications require active, low-power, and nonvolatile tuning. These needs have spurred broad research activities aimed at identifying materials and resonant structures capable of achieving large, dynamic changes in optical properties, especially in the challenging visible spectral range. In this work, we demonstrate dynamic tuning of polarization-dependent gap plasmon resonators that contain the electrochromic oxide WO3. Its refractive index in the visible changes continuously from n = 2.1 to 1.9 upon electrochemical lithium insertion and removal in a solid-state device. By incorporating WO3 into a gap plasmon resonator, the resonant wavelength can be shifted continuously and reversibly by up to 58 nm with less than 2 V electrochemical bias voltage. Lastly, the resonator can remain in a tuned state for tens of minutes under open circuit conditions.},
doi = {10.1021/acs.nanolett.9b03143},
journal = {Nano Letters},
number = 11,
volume = 19,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Biosensing with plasmonic nanosensors
journal, June 2008

  • Anker, Jeffrey N.; Hall, W. Paige; Lyandres, Olga
  • Nature Materials, Vol. 7, Issue 6
  • DOI: 10.1038/nmat2162

Resonant Germanium Nanoantenna Photodetectors
journal, April 2010

  • Cao, Linyou; Park, Joon-Shik; Fan, Pengyu
  • Nano Letters, Vol. 10, Issue 4
  • DOI: 10.1021/nl9037278

Plasmonic Color Filters for CMOS Image Sensor Applications
journal, July 2012

  • Yokogawa, Sozo; Burgos, Stanley P.; Atwater, Harry A.
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl302110z

From metamaterials to metadevices
journal, October 2012

  • Zheludev, Nikolay I.; Kivshar, Yuri S.
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3431

Active Plasmonics: Principles, Structures, and Applications
journal, September 2017


Optical Antennas
journal, January 2009

  • Bharadwaj, Palash; Deutsch, Bradley; Novotny, Lukas
  • Advances in Optics and Photonics, Vol. 1, Issue 3
  • DOI: 10.1364/AOP.1.000438

Plasmonics for extreme light concentration and manipulation
journal, February 2010

  • Schuller, Jon A.; Barnard, Edward S.; Cai, Wenshan
  • Nature Materials, Vol. 9, Issue 3
  • DOI: 10.1038/nmat2630

Doping tunable resonance: Toward electrically tunable mid-infrared metamaterials
journal, March 2010

  • Miao, Xiaoyu; Passmore, Brandon; Gin, Aaron
  • Applied Physics Letters, Vol. 96, Issue 10
  • DOI: 10.1063/1.3309707

Gate-Tunable Conducting Oxide Metasurfaces
journal, August 2016


Electrical tuning of a quantum plasmonic resonance
journal, June 2017

  • Liu, Xiaoge; Kang, Ju-Hyung; Yuan, Hongtao
  • Nature Nanotechnology, Vol. 12, Issue 9
  • DOI: 10.1038/nnano.2017.103

Dynamic Reflection Phase and Polarization Control in Metasurfaces
journal, December 2016


Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers
journal, May 2017


Electrical control of neutral and charged excitons in a monolayer semiconductor
journal, February 2013

  • Ross, Jason S.; Wu, Sanfeng; Yu, Hongyi
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2498

Frequency tunable near-infrared metamaterials based on VO2 phase transition
journal, January 2009

  • Dicken, Matthew J.; Aydin, Koray; Pryce, Imogen M.
  • Optics Express, Vol. 17, Issue 20, p. 18330-18339
  • DOI: 10.1364/OE.17.018330

Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses
journal, September 2014

  • Michel, Ann-Katrin U.; Zalden, Peter; Chigrin, Dmitry N.
  • ACS Photonics, Vol. 1, Issue 9
  • DOI: 10.1021/ph500121d

Probing the electrical switching of a memristive optical antenna by STEM EELS
journal, July 2016

  • Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12162

Dynamic plasmonic colour display
journal, February 2017

  • Duan, Xiaoyang; Kamin, Simon; Liu, Na
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14606

Purcell effect for active tuning of light scattering from semiconductor optical antennas
journal, December 2017


Tunable electrochromic photonic crystals
journal, May 2005

  • Kuai, Su-Lan; Bader, Georges; Ashrit, P. V.
  • Applied Physics Letters, Vol. 86, Issue 22
  • DOI: 10.1063/1.1929079

Giant Plasmon Resonance Shift Using Poly(3,4-ethylenedioxythiophene) Electrochemical Switching
journal, August 2010

  • Stockhausen, Verena; Martin, Pascal; Ghilane, Jalal
  • Journal of the American Chemical Society, Vol. 132, Issue 30
  • DOI: 10.1021/ja103337d

Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals
journal, October 2011

  • Garcia, Guillermo; Buonsanti, Raffaella; Runnerstrom, Evan L.
  • Nano Letters, Vol. 11, Issue 10, p. 4415-4420
  • DOI: 10.1021/nl202597n

Electrically Tunable Plasmonic Behavior of Nanocube–Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer
journal, May 2014

  • König, Tobias A. F.; Ledin, Petr A.; Kerszulis, Justin
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn501601e

Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals
journal, January 2014

  • Runnerstrom, Evan L.; Llordés, Anna; Lounis, Sebastien D.
  • Chem. Commun., Vol. 50, Issue 73
  • DOI: 10.1039/C4CC03109A

High-contrast and fast electrochromic switching enabled by plasmonics
journal, January 2016

  • Xu, Ting; Walter, Erich C.; Agrawal, Amit
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10479

Switchable Plasmonic Metasurfaces with High Chromaticity Containing Only Abundant Metals
journal, October 2017


Metasurface Reconfiguration through Lithium-Ion Intercalation in a Transition Metal Oxide
journal, November 2016

  • Zanotto, Simone; Blancato, Alessandra; Buchheit, Annika
  • Advanced Optical Materials, Vol. 5, Issue 2
  • DOI: 10.1002/adom.201600732

Electrochromic-Tuned Plasmonics for Photothermal Sterile Window
journal, June 2018


Scalable electrochromic nanopixels using plasmonics
journal, May 2019


Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these
journal, January 2007

  • Niklasson, Gunnar A.; Granqvist, Claes G.
  • Journal of Materials Chemistry, Vol. 17, Issue 2, p. 127-156
  • DOI: 10.1039/B612174H

Switchable Materials for Smart Windows
journal, June 2016


Electrochemical and Chemical Insertion for Energy Transformation and Switching
journal, July 2018


Recent advances in electrochromic polymers
journal, October 2014


Continuous layer gap plasmon resonators
journal, January 2011

  • Nielsen, Michael G.; Gramotnev, Dmitri K.; Pors, Anders
  • Optics Express, Vol. 19, Issue 20
  • DOI: 10.1364/OE.19.019310

Gap and channeled plasmons in tapered grooves: a review
journal, January 2015

  • Smith, C. L. C.; Stenger, N.; Kristensen, A.
  • Nanoscale, Vol. 7, Issue 21
  • DOI: 10.1039/C5NR01282A

Subwavelength Plasmonic Color Printing Protected for Ambient Use
journal, January 2014

  • Roberts, Alexander S.; Pors, Anders; Albrektsen, Ole
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404129n

Plasmonic colour generation
journal, November 2016

  • Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.
  • Nature Reviews Materials, Vol. 2, Issue 1
  • DOI: 10.1038/natrevmats.2016.88

Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers
journal, November 2015

  • Park, Junghyun; Kang, Ju-Hyung; Liu, Xiaoge
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15754

Optical indices of lithiated electrochromic oxides
journal, July 1998


Optical Properties and Electronic Structure of Amorphous Germanium
journal, January 1966


Electrochromic oxides: a bandstructure approach
journal, April 1994


Refractive index–molecular weight relationships for poly(ethylene oxide)
journal, July 1965

  • Ingham, John D.; Lawson, D. David
  • Journal of Polymer Science Part A: General Papers, Vol. 3, Issue 7
  • DOI: 10.1002/pol.1965.100030728

Optical Indices of Refraction of W O 3
journal, February 1959


Lithium intercalation into WO 3 and the phase diagram of Li x WO 3
journal, July 1992


All-optical spiking neurosynaptic networks with self-learning capabilities
journal, May 2019


Electrochromic tungsten oxide films: Review of progress 1993–1998
journal, January 2000


Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
journal, August 2010


Operando Atomic Force Microscopy Reveals Mechanics of Structural Water Driven Battery-to-Pseudocapacitor Transition
journal, May 2018


Patternable, Solution-Processed Ionogels for Thin-Film Lithium-Ion Electrolytes
journal, October 2017


Light modulation with nanopatterned diffractive microelectromechanical system pixels
journal, November 2008

  • Skinner, Jack L.; Talin, A. Alec; Horsley, David A.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 6
  • DOI: 10.1116/1.2998725

Nanoscale spatial limitations of large-area substrate conformal imprint lithography
journal, June 2019


An optoelectronic framework enabled by low-dimensional phase-change films
journal, July 2014

  • Hosseini, Peiman; Wright, C. David; Bhaskaran, Harish
  • Nature, Vol. 511, Issue 7508
  • DOI: 10.1038/nature13487

Works referencing / citing this record:

Simultaneously enabling dynamic transparency control and electrical energy storage via electrochromism
journal, January 2020

  • Li, Haizeng; Elezzabi, Abdulhakem Y.
  • Nanoscale Horizons, Vol. 5, Issue 4
  • DOI: 10.1039/c9nh00751b