DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Negative Thermal Expansion Design Strategies in a Diverse Series of Metal-Organic Frameworks.

Abstract

Negative thermal expansion materials are of interest for an array of composite material applications whereby they can compensate for the behavior of a positive thermal expansion matrix. In this work, various design strategies for systematically tuning the coefficient of thermal expansion in a diverse series of metal–organic frameworks (MOFs) are demonstrated. By independently varying the metal, ligand, topology, and guest environment of representative MOFs, a range of negative and positive thermal expansion behaviors are experimentally achieved. Insights into the origin of these behaviors are obtained through an analysis of synchrotron–radiation total scattering and diffraction experiments, as well as complementary molecular simulations. As a result, the implications of these findings on the prospects for MOFs as an emergent negative thermal expansion material class are also discussed.

Authors:
 [1];  [2];  [3];  [1];  [1];  [3];  [2]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. Georgia Inst. of Technology, Atlanta, GA (United States)
  3. Univ. of Amsterdam, Amsterdam (The Netherlands)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1570249
Alternate Identifier(s):
OSTI ID: 1562723
Report Number(s):
SAND-2019-10809J
Journal ID: ISSN 1616-301X; 679347; TRN: US2001073
Grant/Contract Number:  
AC04-94AL85000; NA0003525; AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 48; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; metal–organic frameworks; negative thermal expansion; structural design strategies

Citation Formats

Burtch, Nicholas C., Baxter, Samuel J., Heinen, Jurn, Bird, Ashley, Schneemann, Andreas, Dubbeldam, David, and Wilkinson, Angus. Negative Thermal Expansion Design Strategies in a Diverse Series of Metal-Organic Frameworks.. United States: N. p., 2019. Web. doi:10.1002/adfm.201904669.
Burtch, Nicholas C., Baxter, Samuel J., Heinen, Jurn, Bird, Ashley, Schneemann, Andreas, Dubbeldam, David, & Wilkinson, Angus. Negative Thermal Expansion Design Strategies in a Diverse Series of Metal-Organic Frameworks.. United States. https://doi.org/10.1002/adfm.201904669
Burtch, Nicholas C., Baxter, Samuel J., Heinen, Jurn, Bird, Ashley, Schneemann, Andreas, Dubbeldam, David, and Wilkinson, Angus. Wed . "Negative Thermal Expansion Design Strategies in a Diverse Series of Metal-Organic Frameworks.". United States. https://doi.org/10.1002/adfm.201904669. https://www.osti.gov/servlets/purl/1570249.
@article{osti_1570249,
title = {Negative Thermal Expansion Design Strategies in a Diverse Series of Metal-Organic Frameworks.},
author = {Burtch, Nicholas C. and Baxter, Samuel J. and Heinen, Jurn and Bird, Ashley and Schneemann, Andreas and Dubbeldam, David and Wilkinson, Angus},
abstractNote = {Negative thermal expansion materials are of interest for an array of composite material applications whereby they can compensate for the behavior of a positive thermal expansion matrix. In this work, various design strategies for systematically tuning the coefficient of thermal expansion in a diverse series of metal–organic frameworks (MOFs) are demonstrated. By independently varying the metal, ligand, topology, and guest environment of representative MOFs, a range of negative and positive thermal expansion behaviors are experimentally achieved. Insights into the origin of these behaviors are obtained through an analysis of synchrotron–radiation total scattering and diffraction experiments, as well as complementary molecular simulations. As a result, the implications of these findings on the prospects for MOFs as an emergent negative thermal expansion material class are also discussed.},
doi = {10.1002/adfm.201904669},
journal = {Advanced Functional Materials},
number = 48,
volume = 29,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Negative thermal expansion: a review
journal, July 2009


Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66
journal, March 2016

  • Platero-Prats, Ana E.; Mavrandonakis, Andreas; Gallington, Leighanne C.
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00069

Inorganic–organic hybridization induced uniaxial zero thermal expansion in MC 4 O 4 (M = Ba, Pb)
journal, January 2019

  • Liu, Zhanning; Lin, Kun; Ren, Yang
  • Chemical Communications, Vol. 55, Issue 28
  • DOI: 10.1039/C9CC00226J

Structure and hydrogen bonding at the limits of liquid water stability
journal, January 2018


Effect of gas pressure on negative thermal expansion in MOF-5
journal, January 2013

  • Lock, Nina; Christensen, Mogens; Kepert, Cameron J.
  • Chem. Commun., Vol. 49, Issue 8
  • DOI: 10.1039/C2CC37415C

Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs
journal, December 2014

  • Bouëssel du Bourg, Lila; Ortiz, Aurélie U.; Boutin, Anne
  • APL Materials, Vol. 2, Issue 12
  • DOI: 10.1063/1.4904818

Flexible metal–organic frameworks
journal, January 2014

  • Schneemann, A.; Bon, V.; Schwedler, I.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00101J

Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory
journal, April 2011

  • Valenzano, Loredana; Civalleri, Bartolomeo; Chavan, Sachin
  • Chemistry of Materials, Vol. 23, Issue 7, p. 1700-1718
  • DOI: 10.1021/cm1022882

Compositional inhomogeneity and tuneable thermal expansion in mixed-metal ZIF-8 analogues
journal, January 2018

  • Sapnik, Adam F.; Geddes, Harry S.; Reynolds, Emily M.
  • Chemical Communications, Vol. 54, Issue 69
  • DOI: 10.1039/C8CC04172E

Phonons and anomalous thermal expansion behaviour in crystalline solids
journal, March 2018


Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal–organic framework
journal, January 2015

  • Cliffe, Matthew J.; Hill, Joshua A.; Murray, Claire A.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 17
  • DOI: 10.1039/C5CP01307K

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


A New Ternary Oxide, ZrW2O8
journal, November 1959


Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]
journal, February 2008


Elucidating Negative Thermal Expansion in MOF-5
journal, September 2010

  • Lock, Nina; Wu, Yue; Christensen, Mogens
  • The Journal of Physical Chemistry C, Vol. 114, Issue 39
  • DOI: 10.1021/jp103212z

Very Low Thermal Expansion Coefficient Materials
journal, August 1989


Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8
journal, April 1996


Modulating Adsorption and Stability Properties in Pillared Metal–Organic Frameworks: A Model System for Understanding Ligand Effects
journal, October 2015


Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis
journal, May 2016


Composition, Response to Pressure, and Negative Thermal Expansion in M II B IV F 6 (M = Ca, Mg; B = Zr, Nb)
journal, January 2017


Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
journal, June 2006

  • Park, K. S.; Ni, Z.; Cote, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 27, p. 10186-10191
  • DOI: 10.1073/pnas.0602439103

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Tuning the structure and function of metal–organic frameworks via linker design
journal, January 2014

  • Lu, Weigang; Wei, Zhangwen; Gu, Zhi-Yuan
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00003J

Monolith-Supported Amine-Functionalized Mg 2 (dobpdc) Adsorbents for CO 2 Capture
journal, April 2017

  • Darunte, Lalit A.; Terada, Yuri; Murdock, Christopher R.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 20
  • DOI: 10.1021/acsami.7b02035

Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays
journal, July 2004

  • Ruben, Mario; Rojo, Javier; Romero-Salguero, Francisco J.
  • Angewandte Chemie International Edition, Vol. 43, Issue 28
  • DOI: 10.1002/anie.200300636

Supramolecular interactions induced hinge-like motion of a metal–organic framework accompanied by anisotropic thermal expansion
journal, January 2014

  • Zhang, Lei; Kuang, Xiaofei; Wu, Xiaoyuan
  • Dalton Transactions, Vol. 43, Issue 19
  • DOI: 10.1039/c3dt53580k

A versatile sample-environment cell for non-ambient X-ray scattering experiments
journal, July 2008

  • Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles
  • Journal of Applied Crystallography, Vol. 41, Issue 4
  • DOI: 10.1107/S0021889808020165

An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors
journal, January 2017

  • Stassen, Ivo; Burtch, Nicholas; Talin, Alec
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00122C

Two Decades of Negative Thermal Expansion Research: Where Do We Stand?
journal, June 2012


RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials
journal, February 2015


Zirconium tungstate/polymer nanocomposites: Challenges and opportunities
journal, August 2010

  • Lind, Cora; Coleman, Maria R.; Kozy, Leah C.
  • physica status solidi (b), Vol. 248, Issue 1
  • DOI: 10.1002/pssb.201083967

Mechanical Properties in Metal-Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications
journal, November 2017

  • Burtch, Nicholas C.; Heinen, Jurn; Bennett, Thomas D.
  • Advanced Materials, Vol. 30, Issue 37
  • DOI: 10.1002/adma.201704124

Exceptional Negative Thermal Expansion in Isoreticular Metal–Organic Frameworks
journal, June 2007

  • Dubbeldam, David; Walton, Krista S.; Ellis, Donald E.
  • Angewandte Chemie International Edition, Vol. 46, Issue 24
  • DOI: 10.1002/anie.200700218

Time-Resolved In Situ X-ray Diffraction Reveals Metal-Dependent Metal-Organic Framework Formation
journal, October 2016

  • Wu, Yue; Henke, Sebastian; Kieslich, Gregor
  • Angewandte Chemie International Edition, Vol. 55, Issue 45
  • DOI: 10.1002/anie.201608463

Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation
journal, May 2016


Directing the Breathing Behavior of Pillared-Layered Metal–Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents
journal, May 2012

  • Henke, Sebastian; Schneemann, Andreas; Wütscher, Annika
  • Journal of the American Chemical Society, Vol. 134, Issue 22
  • DOI: 10.1021/ja302991b

Massive Anisotropic Thermal Expansion and Thermo-Responsive Breathing in Metal-Organic Frameworks Modulated by Linker Functionalization
journal, July 2013

  • Henke, Sebastian; Schneemann, Andreas; Fischer, Roland A.
  • Advanced Functional Materials, Vol. 23, Issue 48
  • DOI: 10.1002/adfm.201301256

A pressure-amplifying framework material with negative gas adsorption transitions
journal, April 2016

  • Krause, Simon; Bon, Volodymyr; Senkovska, Irena
  • Nature, Vol. 532, Issue 7599
  • DOI: 10.1038/nature17430

Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships
journal, January 2011

  • Tan, Jin Chong; Cheetham, Anthony K.
  • Chemical Society Reviews, Vol. 40, Issue 2
  • DOI: 10.1039/c0cs00163e

Water Stability and Adsorption in Metal–Organic Frameworks
journal, September 2014

  • Burtch, Nicholas C.; Jasuja, Himanshu; Walton, Krista S.
  • Chemical Reviews, Vol. 114, Issue 20, p. 10575-10612
  • DOI: 10.1021/cr5002589

Metal−Organic Frameworks Provide Large Negative Thermal Expansion Behavior
journal, October 2007

  • Han, Sang Soo; Goddard, William A.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 42
  • DOI: 10.1021/jp075389s

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks
journal, January 2008

  • Walton, Krista S.; Millward, Andrew R.; Dubbeldam, David
  • Journal of the American Chemical Society, Vol. 130, Issue 2, p. 406-407
  • DOI: 10.1021/ja076595g

A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability
journal, October 2008

  • Cavka, Jasmina Hafizovic; Jakobsen, Søren; Olsbye, Unni
  • Journal of the American Chemical Society, Vol. 130, Issue 42, p. 13850-13851
  • DOI: 10.1021/ja8057953

Nanoscale metamaterials: Meta-MOFs and framework materials with anomalous behavior
journal, June 2019


Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
journal, January 2015

  • Chen, Jun; Hu, Lei; Deng, Jinxia
  • Chemical Society Reviews, Vol. 44, Issue 11
  • DOI: 10.1039/C4CS00461B

A combined stretching–tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd( ii )-MOF
journal, January 2014

  • Lama, Prem; Das, Raj Kumar; Smith, Vincent J.
  • Chemical Communications, Vol. 50, Issue 49
  • DOI: 10.1039/C4CC02634A

Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks
journal, October 2014

  • Øien, Sigurd; Wragg, David; Reinsch, Helge
  • Crystal Growth & Design, Vol. 14, Issue 11
  • DOI: 10.1021/cg501386j

Functional Porous Coordination Polymers
journal, April 2004

  • Kitagawa, Susumu; Kitaura, Ryo; Noro, Shin-ichiro
  • Angewandte Chemie International Edition, Vol. 43, Issue 18, p. 2334-2375
  • DOI: 10.1002/anie.200300610

Controlling Thermal Expansion: A Metal–Organic Frameworks Route
journal, November 2016


“Nanoscale Lattice Fence” in a Metal–Organic Framework: Interplay between Hinged Topology and Highly Anisotropic Thermal Response
journal, September 2011

  • DeVries, Lucas D.; Barron, Paul M.; Hurley, Evan P.
  • Journal of the American Chemical Society, Vol. 133, Issue 38
  • DOI: 10.1021/ja2032822

Negative Thermal Expansion in the Metal-Organic Framework Material Cu 3 (1,3,5-benzenetricarboxylate) 2
journal, November 2008

  • Wu, Yue; Kobayashi, Atsushi; Halder, Gregory J.
  • Angewandte Chemie, Vol. 120, Issue 46
  • DOI: 10.1002/ange.200803925

The widespread occurrence of negative thermal expansion in zeolites
journal, January 2001

  • Lightfoot, Philip; Woodcock, David A.; Maple, Martin J.
  • Journal of Materials Chemistry, Vol. 11, Issue 1
  • DOI: 10.1039/b002950p

Time-Resolved In Situ X-ray Diffraction Reveals Metal-Dependent Metal-Organic Framework Formation
journal, October 2016

  • Wu, Yue; Henke, Sebastian; Kieslich, Gregor
  • Angewandte Chemie, Vol. 128, Issue 45
  • DOI: 10.1002/ange.201608463

Functional Porous Coordination Polymers
journal, July 2004


Exceptional Negative Thermal Expansion in Isoreticular Metal–Organic Frameworks
journal, June 2007

  • Dubbeldam, David; Walton, Krista S.; Ellis, Donald E.
  • Angewandte Chemie, Vol. 119, Issue 24
  • DOI: 10.1002/ange.200700218

Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays
journal, September 2004

  • Ruben, Mario; Rojo, Javier; Romero-Salguero, Francisco J.
  • ChemInform, Vol. 35, Issue 36
  • DOI: 10.1002/chin.200436235

Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs
text, January 2014