DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metabolic Incorporation of N ‐Acetyl Muramic Acid Probes into Bacterial Peptidoglycan

Abstract

Abstract Bacterial cells utilize small carbohydrate building blocks to construct peptidoglycan (PG), a highly conserved mesh‐like polymer that serves as a protective coat for the cell. PG production has long been a target for antibiotics, and its breakdown is a source for human immune recognition. A key component of bacterial PG, N ‐acetyl muramic acid (NAM), is a vital element in many synthetically derived immunostimulatory compounds. However, the exact molecular details of these structures and how they are generated remain unknown due to a lack of chemical probes surrounding the NAM core. A robust synthetic strategy to generate bioorthogonally tagged NAM carbohydrate units is implemented. These molecules serve as precursors for PG biosynthesis and recycling. Escherichia coli cells are metabolically engineered to incorporate the bioorthogonal NAM probes into their PG network. The probes are subsequently modified using copper‐catalyzed azide‐alkyne cycloaddition to install fluorophores directly into the bacterial PG, as confirmed by super‐resolution microscopy and high‐resolution mass spectrometry. Here, synthetic notes for key elements of this process to generate the sugar probes as well as streamlined user‐friendly metabolic labeling strategies for both microbiology and immunological applications are described. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1 : Synthesismore » of peracetylated 2‐azido glucosamine Basic Protocol 2 : Synthesis of 2‐azido and 2‐alkyne NAM Basic Protocol 3 : Synthesis of 3‐azido NAM methyl ester Basic Protocol 4 : Incorporation of NAM probes into bacterial peptidoglycan Basic Protocol 5 : Confirmation of bacterial cell wall remodeling by mass spectrometry« less

Authors:
 [1];  [2];  [1];  [1];  [1];  [3];  [4]
  1. Department of Chemistry and Biochemistry University of Delaware Newark Delaware
  2. Department of Chemistry and Biochemistry University of Delaware Newark Delaware,  Cutaneous Microbiome and Inflammation Section, Dermatology Branch National Institute of Arthritis and Musculoskeletal and Skin Diseases Bethesda Maryland
  3. Department of Chemistry and Biochemistry University of Delaware Newark Delaware, Center for the Study of Organic Compounds, CEDECOR‐UNLP‐CIC, Department of Chemistry, Faculty of Exact Sciences National University of La Plata Buenos Aires Argentina
  4. Department of Chemistry and Biochemistry University of Delaware Newark Delaware, Department of Biological Sciences University of Delaware Newark Delaware
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1570027
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Current Protocols in Chemical Biology
Additional Journal Information:
Journal Name: Current Protocols in Chemical Biology Journal Volume: 11 Journal Issue: 4; Journal ID: ISSN 2160-4762
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Country unknown/Code not available
Language:
English

Citation Formats

DeMeester, Kristen E., Liang, Hai, Zhou, Junhui, Wodzanowski, Kimberly A., Prather, Benjamin L., Santiago, Cintia C., and Grimes, Catherine L. Metabolic Incorporation of N ‐Acetyl Muramic Acid Probes into Bacterial Peptidoglycan. Country unknown/Code not available: N. p., 2019. Web. doi:10.1002/cpch.74.
DeMeester, Kristen E., Liang, Hai, Zhou, Junhui, Wodzanowski, Kimberly A., Prather, Benjamin L., Santiago, Cintia C., & Grimes, Catherine L. Metabolic Incorporation of N ‐Acetyl Muramic Acid Probes into Bacterial Peptidoglycan. Country unknown/Code not available. https://doi.org/10.1002/cpch.74
DeMeester, Kristen E., Liang, Hai, Zhou, Junhui, Wodzanowski, Kimberly A., Prather, Benjamin L., Santiago, Cintia C., and Grimes, Catherine L. Thu . "Metabolic Incorporation of N ‐Acetyl Muramic Acid Probes into Bacterial Peptidoglycan". Country unknown/Code not available. https://doi.org/10.1002/cpch.74.
@article{osti_1570027,
title = {Metabolic Incorporation of N ‐Acetyl Muramic Acid Probes into Bacterial Peptidoglycan},
author = {DeMeester, Kristen E. and Liang, Hai and Zhou, Junhui and Wodzanowski, Kimberly A. and Prather, Benjamin L. and Santiago, Cintia C. and Grimes, Catherine L.},
abstractNote = {Abstract Bacterial cells utilize small carbohydrate building blocks to construct peptidoglycan (PG), a highly conserved mesh‐like polymer that serves as a protective coat for the cell. PG production has long been a target for antibiotics, and its breakdown is a source for human immune recognition. A key component of bacterial PG, N ‐acetyl muramic acid (NAM), is a vital element in many synthetically derived immunostimulatory compounds. However, the exact molecular details of these structures and how they are generated remain unknown due to a lack of chemical probes surrounding the NAM core. A robust synthetic strategy to generate bioorthogonally tagged NAM carbohydrate units is implemented. These molecules serve as precursors for PG biosynthesis and recycling. Escherichia coli cells are metabolically engineered to incorporate the bioorthogonal NAM probes into their PG network. The probes are subsequently modified using copper‐catalyzed azide‐alkyne cycloaddition to install fluorophores directly into the bacterial PG, as confirmed by super‐resolution microscopy and high‐resolution mass spectrometry. Here, synthetic notes for key elements of this process to generate the sugar probes as well as streamlined user‐friendly metabolic labeling strategies for both microbiology and immunological applications are described. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1 : Synthesis of peracetylated 2‐azido glucosamine Basic Protocol 2 : Synthesis of 2‐azido and 2‐alkyne NAM Basic Protocol 3 : Synthesis of 3‐azido NAM methyl ester Basic Protocol 4 : Incorporation of NAM probes into bacterial peptidoglycan Basic Protocol 5 : Confirmation of bacterial cell wall remodeling by mass spectrometry},
doi = {10.1002/cpch.74},
journal = {Current Protocols in Chemical Biology},
number = 4,
volume = 11,
place = {Country unknown/Code not available},
year = {Thu Oct 10 00:00:00 EDT 2019},
month = {Thu Oct 10 00:00:00 EDT 2019}
}

Works referenced in this record:

The Mechanism of Action of Fosfomycin (Phosphonomycin)
journal, May 1974

  • Kahan, Frederick M.; Kahan, Jean S.; Cassidy, Patrick J.
  • Annals of the New York Academy of Sciences, Vol. 235, Issue 1 Mode of Actio
  • DOI: 10.1111/j.1749-6632.1974.tb43277.x

Engineering Chemical Reactivity on Cell Surfaces Through Oligosaccharide Biosynthesis
journal, May 1997


Control of Cell Morphogenesis in Bacteria
journal, June 2003


MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis
journal, July 2014


MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli.
journal, July 1995


Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2: IMPLICATIONS FOR CROHN′S DISEASE
journal, January 2003

  • Inohara, Naohiro; Ogura, Yasunori; Fontalba, Ana
  • Journal of Biological Chemistry, Vol. 278, Issue 8
  • DOI: 10.1074/jbc.C200673200

Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics
journal, July 2006

  • Tiyanont, K.; Doan, T.; Lazarus, M. B.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 29
  • DOI: 10.1073/pnas.0600829103

In Situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent D -Amino Acids
journal, October 2012

  • Kuru, Erkin; Hughes, H. Velocity; Brown, Pamela J.
  • Angewandte Chemie International Edition, Vol. 51, Issue 50
  • DOI: 10.1002/anie.201206749

Cell-Wall Engineering of Living Bacteria
journal, August 2002

  • Sadamoto, Reiko; Niikura, Kenichi; Sears, Pamela S.
  • Journal of the American Chemical Society, Vol. 124, Issue 31
  • DOI: 10.1021/ja026133x

d -Amino Acid Chemical Reporters Reveal Peptidoglycan Dynamics of an Intracellular Pathogen
journal, January 2013

  • Siegrist, M. Sloan; Whiteside, Sarah; Jewett, John C.
  • ACS Chemical Biology, Vol. 8, Issue 3
  • DOI: 10.1021/cb3004995

Turnover of cell walls in microorganisms.
journal, January 1988


Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications
journal, April 2017

  • Liang, Hai; DeMeester, Kristen E.; Hou, Ching-Wen
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15015

The mucopeptide turnover in the cell walls of growing cultures ofBacillus megaterium KM
journal, August 1962

  • Chaloupka, J.; Křečková, P.; Řfhová, L.
  • Experientia, Vol. 18, Issue 8
  • DOI: 10.1007/BF02172250

Selective Penicillin-Binding Protein Imaging Probes Reveal Substructure in Bacterial Cell Division
journal, August 2012

  • Kocaoglu, Ozden; Calvo, Rebecca A.; Sham, Lok-To
  • ACS Chemical Biology, Vol. 7, Issue 10
  • DOI: 10.1021/cb300329r

How Bacteria Consume Their Own Exoskeletons (Turnover and Recycling of Cell Wall Peptidoglycan)
journal, June 2008

  • Park, J. T.; Uehara, T.
  • Microbiology and Molecular Biology Reviews, Vol. 72, Issue 2
  • DOI: 10.1128/MMBR.00027-07

Bacterial cell-wall recycling: Bacterial cell-wall recycling
journal, November 2012


Cloning and identification of the Escherichia coli murB DNA sequence, which encodes UDP-N-acetylenolpyruvoylglucosamine reductase.
journal, March 1992


Molecular mechanisms that confer antibacterial drug resistance
journal, August 2000


Crystallization and preliminary X-ray analysis of the Escherichia coli UDP-MurNAc-tripeptide D -alanyl- D -alanine-adding enzyme (MurF)
journal, December 1999

  • Yan, Youwei; Munshi, Sanjeev; Li, Ying
  • Acta Crystallographica Section D Biological Crystallography, Vol. 55, Issue 12
  • DOI: 10.1107/S0907444999011786

Bacterial Surface Engineering Utilizing Glucosamine Phosphate Derivatives as Cell Wall Precursor Surrogates
journal, November 2008

  • Sadamoto, Reiko; Matsubayashi, Takeshi; Shimizu, Masataka
  • Chemistry - A European Journal, Vol. 14, Issue 33
  • DOI: 10.1002/chem.200801734

Reconstitution of Peptidoglycan Cross-Linking Leads to Improved Fluorescent Probes of Cell Wall Synthesis
journal, July 2014

  • Lebar, Matthew D.; May, Janine M.; Meeske, Alexander J.
  • Journal of the American Chemical Society, Vol. 136, Issue 31
  • DOI: 10.1021/ja505668f

Peptidoglycans (Mucopeptides): Structure, Function, and Variations
journal, May 1974


Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance
journal, January 1992


A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis
journal, December 2013


New chemical tools to probe cell wall biosynthesis in bacteria
journal, October 2015


1,3-Dipolar Cycloadditions of Diazo Compounds in the Presence of Azides
journal, March 2016


Cytoplasmic steps of peptidoglycan biosynthesis
journal, March 2008


Coupled, Circumferential Motions of the Cell Wall Synthesis Machinery and MreB Filaments in B. subtilis
journal, June 2011


Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction.
journal, October 1994


Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes
journal, March 2014

  • Shieh, P.; Siegrist, M. S.; Cullen, A. J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 15
  • DOI: 10.1073/pnas.1322727111

Cell Surface Engineering by a Modified Staudinger Reaction
journal, March 2000


Purification and Characterization of the Bacterial MraY Translocase Catalyzing the First Membrane Step of Peptidoglycan Biosynthesis
journal, May 2004

  • Bouhss, Ahmed; Crouvoisier, Muriel; Blanot, Didier
  • Journal of Biological Chemistry, Vol. 279, Issue 29
  • DOI: 10.1074/jbc.M314165200

Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli
journal, October 2008


Synthesis of Functionalized N -Acetyl Muramic Acids To Probe Bacterial Cell Wall Recycling and Biosynthesis
journal, July 2018

  • DeMeester, Kristen E.; Liang, Hai; Jensen, Matthew R.
  • Journal of the American Chemical Society, Vol. 140, Issue 30
  • DOI: 10.1021/jacs.8b03304

Postsynthetic Modification of Bacterial Peptidoglycan Using Bioorthogonal N -Acetylcysteamine Analogs and Peptidoglycan O -Acetyltransferase B
journal, September 2017

  • Wang, Yiben; Lazor, Klare M.; DeMeester, Kristen E.
  • Journal of the American Chemical Society, Vol. 139, Issue 39
  • DOI: 10.1021/jacs.7b06820

Bacterial cell walls, innate immunity and immunoadjuvants
journal, December 2007


A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis
journal, June 2013

  • Gisin, Jonathan; Schneider, Alexander; Nägele, Bettina
  • Nature Chemical Biology, Vol. 9, Issue 8
  • DOI: 10.1038/nchembio.1289

Composition of the Cell Wall of Staphylococcus aureus: Its Relation to the Mechanism of Action of Penicillin
journal, December 1959

  • Strominger, Jack L.; Park, James T.; Thompson, Richard E.
  • Journal of Biological Chemistry, Vol. 234, Issue 12
  • DOI: 10.1016/S0021-9258(18)69662-0

Modulation of the NOD-like receptors NOD1 and NOD2: A chemist’s perspective
journal, May 2019

  • D'Ambrosio, Elizabeth A.; Drake, Walter R.; Mashayekh, Siavash
  • Bioorganic & Medicinal Chemistry Letters, Vol. 29, Issue 10
  • DOI: 10.1016/j.bmcl.2019.03.010

A Biosynthetic Strategy for Re-engineering the Staphylococcus aureus Cell Wall with Non-native Small Molecules
journal, October 2010

  • Nelson, James W.; Chamessian, Alexander G.; McEnaney, Patrick J.
  • ACS Chemical Biology, Vol. 5, Issue 12
  • DOI: 10.1021/cb100195d

Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli
journal, June 1997


A “Traceless” Staudinger Ligation for the Chemoselective Synthesis of Amide Bonds
journal, July 2000

  • Saxon, Eliana; Armstrong, Joshua I.; Bertozzi, Carolyn R.
  • Organic Letters, Vol. 2, Issue 14
  • DOI: 10.1021/ol006054v