DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Simple Electrode-Level Chemical Presodiation Route by Solution Spraying to Improve the Energy Density of Sodium-Ion Batteries

Abstract

The formation of a solid electrolyte interface (SEI) on the surface of a carbon anode consumes the active sodium ions from the cathode and reduces the energy density of sodium-ion batteries (SIBs). In this work, a simple electrode-level presodiation strategy by spraying a sodium naphthaline (Naph-Na) solution onto a carbon electrode is reported, which compensates the initial sodium loss and improves the energy density of SIBs. After presodiation, an SEI layer is preformed on the surface of carbon anode before battery cycling. It is shown that a large irreversible capacity of 60 mAh g–1 is replenished and 20% increase of the first-cycle Coulombic efficiency is achieved for a hard carbon anode using this presodiation strategy, and the energy density of a Na0.9[Cu0.22Fe0.30Mn0.48]O2||carbon full cell is increased from 141 to 240 Wh kg–1 by using the presodiated carbon anode. This simple and scalable electrode-level chemical presodiation route also shows generality and value for the presodiation of other anodes in SIBs.

Authors:
 [1];  [1];  [2];  [1];  [1];  [3]; ORCiD logo [1]
  1. Huazhong Univ. of Science and Technology, Wuhan (China)
  2. Argonne National Lab. (ANL), Argonne, IL (United States); Peking Univ., Shenzhen (China)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; National Natural Science Foundation of China (NSFC); China Postdoctoral Science Foundation
OSTI Identifier:
1763888
Alternate Identifier(s):
OSTI ID: 1569774
Grant/Contract Number:  
AC02-06CH11357; 51802105; 0106187114
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 50; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; carbon anodes; presodiation; electrode level; solution spraying; sodium-ion batteries

Citation Formats

Liu, Xiaoxiao, Tan, Yuchen, Liu, Tongchao, Wang, Wenyu, Li, Chunhao, Lu, Jun, and Sun, Yongming. A Simple Electrode-Level Chemical Presodiation Route by Solution Spraying to Improve the Energy Density of Sodium-Ion Batteries. United States: N. p., 2019. Web. doi:10.1002/adfm.201903795.
Liu, Xiaoxiao, Tan, Yuchen, Liu, Tongchao, Wang, Wenyu, Li, Chunhao, Lu, Jun, & Sun, Yongming. A Simple Electrode-Level Chemical Presodiation Route by Solution Spraying to Improve the Energy Density of Sodium-Ion Batteries. United States. https://doi.org/10.1002/adfm.201903795
Liu, Xiaoxiao, Tan, Yuchen, Liu, Tongchao, Wang, Wenyu, Li, Chunhao, Lu, Jun, and Sun, Yongming. Tue . "A Simple Electrode-Level Chemical Presodiation Route by Solution Spraying to Improve the Energy Density of Sodium-Ion Batteries". United States. https://doi.org/10.1002/adfm.201903795. https://www.osti.gov/servlets/purl/1763888.
@article{osti_1763888,
title = {A Simple Electrode-Level Chemical Presodiation Route by Solution Spraying to Improve the Energy Density of Sodium-Ion Batteries},
author = {Liu, Xiaoxiao and Tan, Yuchen and Liu, Tongchao and Wang, Wenyu and Li, Chunhao and Lu, Jun and Sun, Yongming},
abstractNote = {The formation of a solid electrolyte interface (SEI) on the surface of a carbon anode consumes the active sodium ions from the cathode and reduces the energy density of sodium-ion batteries (SIBs). In this work, a simple electrode-level presodiation strategy by spraying a sodium naphthaline (Naph-Na) solution onto a carbon electrode is reported, which compensates the initial sodium loss and improves the energy density of SIBs. After presodiation, an SEI layer is preformed on the surface of carbon anode before battery cycling. It is shown that a large irreversible capacity of 60 mAh g–1 is replenished and 20% increase of the first-cycle Coulombic efficiency is achieved for a hard carbon anode using this presodiation strategy, and the energy density of a Na0.9[Cu0.22Fe0.30Mn0.48]O2||carbon full cell is increased from 141 to 240 Wh kg–1 by using the presodiated carbon anode. This simple and scalable electrode-level chemical presodiation route also shows generality and value for the presodiation of other anodes in SIBs.},
doi = {10.1002/adfm.201903795},
journal = {Advanced Functional Materials},
number = 50,
volume = 29,
place = {United States},
year = {Tue Oct 08 00:00:00 EDT 2019},
month = {Tue Oct 08 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 70 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Surface-Dominated Sodium Storage Towards High Capacity and Ultrastable Anode Material for Sodium-Ion Batteries
journal, October 2018


Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
journal, August 2011

  • Komaba, Shinichi; Murata, Wataru; Ishikawa, Toru
  • Advanced Functional Materials, Vol. 21, Issue 20
  • DOI: 10.1002/adfm.201100854

Mass Production and Pore Size Control of Holey Carbon Microcages
journal, October 2017

  • Zhang, Lei; Liu, Xiaoxiao; Dou, Yuhai
  • Angewandte Chemie International Edition, Vol. 56, Issue 44
  • DOI: 10.1002/anie.201708732

Core-Shell Ge@Graphene@TiO 2 Nanofibers as a High-Capacity and Cycle-Stable Anode for Lithium and Sodium Ion Battery
journal, December 2015

  • Wang, Xiaoyan; Fan, Ling; Gong, Decai
  • Advanced Functional Materials, Vol. 26, Issue 7
  • DOI: 10.1002/adfm.201504589

Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode
journal, October 2015


Ultra-Thick, Low-Tortuosity, and Mesoporous Wood Carbon Anode for High-Performance Sodium-Ion Batteries
journal, May 2016


High-capacity battery cathode prelithiation to offset initial lithium loss
journal, January 2016


Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells
journal, December 2015


Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries
journal, January 2015

  • Nie, Mengyun; Demeaux, Julien; Young, Benjamin T.
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0021513jes

High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide
journal, January 2014

  • Zheng, Jian; Zhang, Han; Dong, Shaohua
  • Nature Communications, Vol. 5, Issue 1, Article No. 2995
  • DOI: 10.1038/ncomms3995

Na-Ion Battery Anodes: Materials and Electrochemistry
journal, January 2016


Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior
journal, January 2016

  • de la Llave, Ezequiel; Borgel, Valentina; Park, Kang-Joon
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 3
  • DOI: 10.1021/acsami.5b09835

Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents
journal, October 2014

  • Zhao, Jie; Lu, Zhenda; Liu, Nian
  • Nature Communications, Vol. 5, Article No. 5088
  • DOI: 10.1038/ncomms6088

Hard-Soft Composite Carbon as a Long-Cycling and High-Rate Anode for Potassium-Ion Batteries
journal, May 2017

  • Jian, Zelang; Hwang, Sooyeon; Li, Zhifei
  • Advanced Functional Materials, Vol. 27, Issue 26
  • DOI: 10.1002/adfm.201700324

NaN 3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na 0.67 [Fe 0.5 Mn 0.5 ]O 2 cathode for sodium-ion battery
journal, January 2017


Nanostructured Conversion-Type Negative Electrode Materials for Low-Cost and High-Performance Sodium-Ion Batteries
journal, August 2018

  • Wei, Xiujuan; Wang, Xuanpeng; Tan, Xin
  • Advanced Functional Materials, Vol. 28, Issue 46
  • DOI: 10.1002/adfm.201804458

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon
journal, March 2017

  • Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.
  • Advanced Materials, Vol. 29, Issue 18
  • DOI: 10.1002/adma.201606860

Insight into Sodium Insertion and the Storage Mechanism in Hard Carbon
journal, October 2018


Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries
journal, August 2018


In Situ Optical Imaging of Sodium Electrodeposition: Effects of Fluoroethylene Carbonate
journal, August 2017


An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2
journal, December 2013


Fullerene‐Based In Situ Doping of N and Fe into a 3D Cross‐Like Hierarchical Carbon Composite for High‐Performance Supercapacitors
journal, January 2019

  • Peng, Zhiyao; Hu, Yajing; Wang, Jingjing
  • Advanced Energy Materials, Vol. 9, Issue 11
  • DOI: 10.1002/aenm.201802928

Artificial Solid Electrolyte Interphase-Protected Li x Si Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries
journal, June 2015

  • Zhao, Jie; Lu, Zhenda; Wang, Haotian
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b04526

Highly Efficient, Cost Effective, and Safe Sodiation Agent for High-Performance Sodium-Ion Batteries
journal, August 2018

  • Shanmukaraj, Devaraj; Kretschmer, Katja; Sahu, Tuhin
  • ChemSusChem, Vol. 11, Issue 18
  • DOI: 10.1002/cssc.201801099

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Insertion compounds and composites made by ball milling for advanced sodium-ion batteries
journal, January 2016

  • Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10308

Sodium-Ion Batteries
journal, June 2018

  • Rojo, Teofilo; Hu, Yong-Sheng; Forsyth, Maria
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201800880

Mass Production and Pore Size Control of Holey Carbon Microcages
journal, October 2017


Works referencing / citing this record:

Chemically Prelithiated Hard‐Carbon Anode for High Power and High Capacity Li‐Ion Batteries
journal, January 2020