DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)

Abstract

Abstract. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) provided a highly detailed set of remote-sensing and surface observations to study Antarctic clouds and surface energy balance, which have received much less attention than for the Arctic due to greater logistical challenges. Limited prior Antarctic cloud observations have slowed the progress of numerical weather prediction in this region. The AWARE observations from the West Antarctic Ice Sheet (WAIS) Divide during December 2015 and January 2016 are used to evaluate the operational forecasts of the Antarctic Mesoscale Prediction System (AMPS) and new simulations with the Polar Weather Research and Forecasting Model (WRF) 3.9.1. The Polar WRF 3.9.1 simulations are conducted with the WRF single-moment 5-class microphysics (WSM5C) used by the AMPS and with newer generation microphysics schemes. The AMPS simulates few liquid clouds during summer at the WAIS Divide, which is inconsistent with observations of frequent low-level liquid clouds. Polar WRF 3.9.1 simulations show that this result is a consequence of WSM5C. More advanced microphysics schemes simulate more cloud liquid water and produce stronger cloud radiative forcing, resulting in downward longwave and shortwave radiation at the surface more in agreement with observations. Similarly, increased cloud fraction is simulated withmore » the more advanced microphysics schemes. All of the simulations, however, produce smaller net cloud fractions than observed. Ice water paths vary less between the simulations than liquid water paths. The colder and drier atmosphere driven by the Global Forecast System (GFS) initial and boundary conditions for AMPS forecasts produces lesser cloud amounts than the Polar WRF 3.9.1 simulations driven by ERA-Interim.« less

Authors:
; ; ; ORCiD logo; ;
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1569771
Alternate Identifier(s):
OSTI ID: 1803200
Grant/Contract Number:  
SC0017981
Resource Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online) Journal Volume: 19 Journal Issue: 19; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Hines, Keith M., Bromwich, David H., Wang, Sheng-Hung, Silber, Israel, Verlinde, Johannes, and Lubin, Dan. Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS). Germany: N. p., 2019. Web. doi:10.5194/acp-19-12431-2019.
Hines, Keith M., Bromwich, David H., Wang, Sheng-Hung, Silber, Israel, Verlinde, Johannes, & Lubin, Dan. Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS). Germany. https://doi.org/10.5194/acp-19-12431-2019
Hines, Keith M., Bromwich, David H., Wang, Sheng-Hung, Silber, Israel, Verlinde, Johannes, and Lubin, Dan. Tue . "Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)". Germany. https://doi.org/10.5194/acp-19-12431-2019.
@article{osti_1569771,
title = {Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)},
author = {Hines, Keith M. and Bromwich, David H. and Wang, Sheng-Hung and Silber, Israel and Verlinde, Johannes and Lubin, Dan},
abstractNote = {Abstract. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) provided a highly detailed set of remote-sensing and surface observations to study Antarctic clouds and surface energy balance, which have received much less attention than for the Arctic due to greater logistical challenges. Limited prior Antarctic cloud observations have slowed the progress of numerical weather prediction in this region. The AWARE observations from the West Antarctic Ice Sheet (WAIS) Divide during December 2015 and January 2016 are used to evaluate the operational forecasts of the Antarctic Mesoscale Prediction System (AMPS) and new simulations with the Polar Weather Research and Forecasting Model (WRF) 3.9.1. The Polar WRF 3.9.1 simulations are conducted with the WRF single-moment 5-class microphysics (WSM5C) used by the AMPS and with newer generation microphysics schemes. The AMPS simulates few liquid clouds during summer at the WAIS Divide, which is inconsistent with observations of frequent low-level liquid clouds. Polar WRF 3.9.1 simulations show that this result is a consequence of WSM5C. More advanced microphysics schemes simulate more cloud liquid water and produce stronger cloud radiative forcing, resulting in downward longwave and shortwave radiation at the surface more in agreement with observations. Similarly, increased cloud fraction is simulated with the more advanced microphysics schemes. All of the simulations, however, produce smaller net cloud fractions than observed. Ice water paths vary less between the simulations than liquid water paths. The colder and drier atmosphere driven by the Global Forecast System (GFS) initial and boundary conditions for AMPS forecasts produces lesser cloud amounts than the Polar WRF 3.9.1 simulations driven by ERA-Interim.},
doi = {10.5194/acp-19-12431-2019},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 19,
volume = 19,
place = {Germany},
year = {Tue Oct 08 00:00:00 EDT 2019},
month = {Tue Oct 08 00:00:00 EDT 2019}
}

Works referenced in this record:

Development and Testing of Polar WRF. Part III: Arctic Land
journal, January 2011

  • Hines, Keith M.; Bromwich, David H.; Bai, Le-Sheng
  • Journal of Climate, Vol. 24, Issue 1
  • DOI: 10.1175/2010JCLI3460.1

Clouds at Arctic Atmospheric Observatories. Part II: Thermodynamic Phase Characteristics
journal, March 2011

  • Shupe, Matthew D.
  • Journal of Applied Meteorology and Climatology, Vol. 50, Issue 3
  • DOI: 10.1175/2010JAMC2468.1

Sensitivity of modeled arctic mixed-phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions: SIMULATION OF ARCTIC MIXED-PHASE CLOUDS
journal, March 2008

  • Morrison, Hugh; Pinto, James O.; Curry, Judith A.
  • Journal of Geophysical Research: Atmospheres, Vol. 113, Issue D5
  • DOI: 10.1029/2007JD008729

Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data: ALOS PALSAR ANTARCTICA
journal, June 2008


A Decade of Antarctic Science Support Through Amps
journal, November 2012

  • Powers, Jordan G.; Manning, Kevin W.; Bromwich, David H.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 11
  • DOI: 10.1175/BAMS-D-11-00186.1

A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone
journal, October 2014

  • Thompson, Gregory; Eidhammer, Trude
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 10
  • DOI: 10.1175/JAS-D-13-0305.1

New Reconstruction of Antarctic Near-Surface Temperatures: Multidecadal Trends and Reliability of Global Reanalyses
journal, November 2014


A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description
journal, June 2005

  • Morrison, H.; Curry, J. A.; Khvorostyanov, V. I.
  • Journal of the Atmospheric Sciences, Vol. 62, Issue 6
  • DOI: 10.1175/JAS3446.1

Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests
journal, January 2015

  • Morrison, Hugh; Milbrandt, Jason A.
  • Journal of the Atmospheric Sciences, Vol. 72, Issue 1
  • DOI: 10.1175/JAS-D-14-0065.1

The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design
journal, January 2014

  • Tjernström, M.; Leck, C.; Birch, C. E.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 6
  • DOI: 10.5194/acp-14-2823-2014

Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization
journal, December 2008

  • Thompson, Gregory; Field, Paul R.; Rasmussen, Roy M.
  • Monthly Weather Review, Vol. 136, Issue 12
  • DOI: 10.1175/2008MWR2387.1

Development of the Regional Arctic System Model (RASM): Near-Surface Atmospheric Climate Sensitivity
journal, August 2017

  • Cassano, John J.; DuVivier, Alice; Roberts, Andrew
  • Journal of Climate, Vol. 30, Issue 15
  • DOI: 10.1175/JCLI-D-15-0775.1

Ice Initiation in Natural Clouds
book, January 1986


Microwave Radiometer (MWR) Handbook
report, August 2006


Contribution of Antarctica to past and future sea-level rise
journal, March 2016


Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties
journal, January 2011

  • Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny
  • Journal of Geophysical Research, Vol. 116, Issue D19
  • DOI: 10.1029/2011JD016050

The microphysics of clouds over the Antarctic Peninsula – Part 1: Observations
journal, January 2016

  • Lachlan-Cope, Tom; Listowski, Constantino; O'Shea, Sebastian
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 24
  • DOI: 10.5194/acp-16-15605-2016

Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: Surface and upper air analysis
journal, January 2011

  • Wilson, Aaron B.; Bromwich, David H.; Hines, Keith M.
  • Journal of Geophysical Research, Vol. 116, Issue D11
  • DOI: 10.1029/2010JD015013

Evaluation of Polar WRF forecasts on the Arctic System Reanalysis Domain: 2. Atmospheric hydrologic cycle: POLAR WRF ATMOSPHERIC HYDROLOGIC CYCLE
journal, February 2012

  • Wilson, Aaron B.; Bromwich, David H.; Hines, Keith M.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D4
  • DOI: 10.1029/2011JD016765

Aerosol exchange in the remote troposphere
journal, July 1986


Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion
journal, January 2011

  • Solomon, A.; Shupe, M. D.; Persson, P. O. G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 19
  • DOI: 10.5194/acp-11-10127-2011

Error Characteristics of Ceilometer-Based Observations of Cloud Amount
journal, July 2016

  • Wagner, Timothy J.; Kleiss, Jessica M.
  • Journal of Atmospheric and Oceanic Technology, Vol. 33, Issue 7
  • DOI: 10.1175/JTECH-D-15-0258.1

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Seasonality of aerosol optical properties in the Arctic
journal, January 2018

  • Schmeisser, Lauren; Backman, John; Ogren, John A.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 16
  • DOI: 10.5194/acp-18-11599-2018

Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains
journal, January 2010

  • Barlage, Michael; Chen, Fei; Tewari, Mukul
  • Journal of Geophysical Research, Vol. 115, Issue D22
  • DOI: 10.1029/2009JD013470

Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean
journal, January 2009

  • Bromwich, David H.; Hines, Keith M.; Bai, Le‐Sheng
  • Journal of Geophysical Research, Vol. 114, Issue D8
  • DOI: 10.1029/2008JD010300

Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year
journal, January 2009

  • Steig, Eric J.; Schneider, David P.; Rutherford, Scott D.
  • Nature, Vol. 457, Issue 7228
  • DOI: 10.1038/nature07669

Intercomparison of Bulk Cloud Microphysics Schemes in Mesoscale Simulations of Springtime Arctic Mixed-Phase Stratiform Clouds
journal, July 2006

  • Morrison, H.; Pinto, J. O.
  • Monthly Weather Review, Vol. 134, Issue 7
  • DOI: 10.1175/MWR3154.1

Sea Ice Enhancements to Polar WRF*
journal, June 2015

  • Hines, Keith M.; Bromwich, David H.; Bai, Lesheng
  • Monthly Weather Review, Vol. 143, Issue 6
  • DOI: 10.1175/MWR-D-14-00344.1

Atmospheric radiative transfer modeling: a summary of the AER codes
journal, March 2005

  • Clough, S. A.; Shephard, M. W.; Mlawer, E. J.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 91, Issue 2
  • DOI: 10.1016/j.jqsrt.2004.05.058

Polar Liquid Cloud Base Detection Algorithms for High Spectral Resolution or Micropulse Lidar Data
journal, April 2018

  • Silber, Israel; Verlinde, Johannes; Eloranta, Edwin W.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 8
  • DOI: 10.1029/2017JD027840

Coastal Antarctic aerosol: the seasonal pattern of its chemical composition and radionuclide content
journal, November 1988


Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology
journal, June 2018

  • Silber, Israel; Verlinde, Johannes; Eloranta, Edwin W.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 11
  • DOI: 10.1029/2018JD028279

Significant Warming of the Antarctic Winter Troposphere
journal, March 2006


Parametrizing turbulent exchange over summer sea ice and the marginal ice zone
journal, April 2010

  • Andreas, Edgar L.; Horst, Thomas W.; Grachev, Andrey A.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 136, Issue 649
  • DOI: 10.1002/qj.618

Mixed‐phase cloud physics and Southern Ocean cloud feedback in climate models
journal, September 2015

  • McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 18
  • DOI: 10.1002/2015JD023603

Central West Antarctica among the most rapidly warming regions on Earth
journal, December 2012

  • Bromwich, David H.; Nicolas, Julien P.; Monaghan, Andrew J.
  • Nature Geoscience, Vol. 6, Issue 2
  • DOI: 10.1038/ngeo1671

Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic: POLAR WEATHER RESEARCH AND FORECASTING MODEL
journal, January 2013

  • Bromwich, David H.; Otieno, Francis O.; Hines, Keith M.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 2
  • DOI: 10.1029/2012JD018139

Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: single-layer cloud
journal, April 2009

  • Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh
  • Quarterly Journal of the Royal Meteorological Society, Vol. 135, Issue 641
  • DOI: 10.1002/qj.416

Antarctic Automatic Weather Station Program: 30 Years of Polar Observation
journal, October 2012

  • Lazzara, Matthew A.; Weidner, George A.; Keller, Linda M.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 10
  • DOI: 10.1175/BAMS-D-11-00015.1

Novel polarization-sensitive micropulse lidar measurement technique
journal, January 2007

  • Flynn, Connor J.; Mendoza, Albert; Zheng, Yunhui
  • Optics Express, Vol. 15, Issue 6
  • DOI: 10.1364/OE.15.002785

The microphysics of clouds over the Antarctic Peninsula – Part 2: modelling aspects within Polar WRF
journal, January 2017

  • Listowski, Constantino; Lachlan-Cope, Tom
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 17
  • DOI: 10.5194/acp-17-10195-2017

Evaluation of the AMPS Boundary Layer Simulations on the Ross Ice Shelf, Antarctica, with Unmanned Aircraft Observations
journal, August 2017

  • Wille, Jonathan D.; Bromwich, David H.; Cassano, John J.
  • Journal of Applied Meteorology and Climatology, Vol. 56, Issue 8
  • DOI: 10.1175/JAMC-D-16-0339.1

Tropospheric clouds in Antarctica
journal, January 2012

  • Bromwich, David H.; Nicolas, Julien P.; Hines, Keith M.
  • Reviews of Geophysics, Vol. 50, Issue 1
  • DOI: 10.1029/2011RG000363

A Neural Network for Real-Time Retrievals of PWV and LWP From Arctic Millimeter-Wave Ground-Based Observations
journal, July 2009

  • Cadeddu, M. P.; Turner, D. D.; Liljegren, J. C.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, Issue 7
  • DOI: 10.1109/TGRS.2009.2013205

The Arm Climate Research Facility: A Review of Structure and Capabilities
journal, March 2013

  • Mather, James H.; Voyles, Jimmy W.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 3
  • DOI: 10.1175/BAMS-D-11-00218.1

The Development and Verification of A Cloud Prediction Scheme For the Ecmwf Model
journal, July 1987

  • Slingo, J. M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 113, Issue 477
  • DOI: 10.1002/qj.49711347710

Antarctic clouds studied for first time in five decades
journal, January 2016


A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description
journal, September 2005

  • Milbrandt, J. A.; Yau, M. K.
  • Journal of the Atmospheric Sciences, Vol. 62, Issue 9
  • DOI: 10.1175/JAS3535.1

Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes
journal, June 2014

  • Scott, Ryan C.; Lubin, Dan
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 11
  • DOI: 10.1002/2013JD021132

Simulation of Late Summer Arctic Clouds during ASCOS with Polar WRF
journal, February 2017


An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog
journal, March 2006


West Antarctic Ice Sheet Cloud Cover and Surface Radiation Budget from NASA A-Train Satellites
journal, August 2017


Clouds enhance Greenland ice sheet meltwater runoff
journal, January 2016

  • Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10266

January 2016 extensive summer melt in West Antarctica favoured by strong El Niño
journal, June 2017

  • Nicolas, Julien P.; Vogelmann, Andrew M.; Scott, Ryan C.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15799

In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf
journal, January 2012

  • Grosvenor, D. P.; Choularton, T. W.; Lachlan-Cope, T.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 23
  • DOI: 10.5194/acp-12-11275-2012

The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus
journal, January 2015

  • Solomon, A.; Feingold, G.; Shupe, M. D.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 18
  • DOI: 10.5194/acp-15-10631-2015

Erratum: Corrigendum: Central West Antarctica among the most rapidly warming regions on Earth
journal, December 2013

  • Bromwich, David H.; Nicolas, Julien P.; Monaghan, Andrew J.
  • Nature Geoscience, Vol. 7, Issue 1
  • DOI: 10.1038/ngeo2016

Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models: Surface energy budget of Larsen C
journal, February 2015

  • King, J. C.; Gadian, A.; Kirchgaessner, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 4
  • DOI: 10.1002/2014JD022604

Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part III: Introduction of Multiple Free Categories
journal, March 2016

  • Milbrandt, J. A.; Morrison, H.
  • Journal of the Atmospheric Sciences, Vol. 73, Issue 3
  • DOI: 10.1175/JAS-D-15-0204.1