DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pellet fueling experiments in Wendelstein 7-X

Abstract

During the two most recent experimental campaigns in the advanced stellarator Wendelstein 7-X (W7-X) (Klinger et al 2017 Plasma Phys. Control. Fusion 59 014018; Bosch et al 2017 Nucl. Fusion 57 116015; Wolf et al 2017 Nucl. Fusion 57 102020; Pedersen et al 2017 Phys. Plasmas 24 0555030) hydrogen ice pellet injection was performed for the first time. In order to investigate the potential of pellet fueling in W7-X and to study the particle deposition in a large stellarator, a blower-gun system was installed with 40 pellets capability. The experience gained with this system will be used for the specification of a future steady-state pellet injector system. One important motivation for a pellet injector (Dibon 2014 Master-Thesis Technical University Munich, Max-Planck Institut IPP) on W7-X is the mitigation of hollow density profiles expected in case of predominant neoclassical transport. For long-pulse operation of up to 30 min, only electron cyclotron resonance heating is available on W7-X. Hence, pellet injection will be the only source for deep particle fueling. Deep particle fueling by pellets in tokamaks is supported by a grad-B drift, if the pellets are injected from the magnetic high-field-side. This approach was tested in W7-X, as well. The injectionmore » of series of pellets was also tested. Here, deep fueling is supported for later pellets in the series by the plasma cooling following the initial pellets in the same series. As in earlier experiments in the heliotron LHD (Takeiri et al 2017 Nucl. Fusion 57 102023), deep and rapid fueling could be achieved successfully in W7-X.« less

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [2];  [2];  [1]; ORCiD logo [1];  [1];  [1];  [3];  [1];  [4];  [1];  [1];  [1];  [1];  [5];  [1];  [6];  [1] more »;  [4]; ORCiD logo [1];  [1];  [7];  [1]; ORCiD logo [1];  [4];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [6];  [1];  [1];  [8]; ORCiD logo [9];  [1] « less
  1. Max-Planck Inst. fuer Plasmaphysik IPP, Greifswald (Germany)
  2. CIEMAT, Madrid (Spain)
  3. LPP-ERM/KMS, Brussels (Belgium)
  4. Max-Planck Inst. fuer Plasmaphysik IPP, Garching (Germany)
  5. Atominstitut TU Wien, Vienna (Austria)
  6. Wigner Research Centre for Physiks, Budapest (Hungary)
  7. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  8. Univ. of Wisconsin, Madison, WI (United States)
  9. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
Foreign Funding; USDOE
Contributing Org.:
Wendelstein 7-X Team
OSTI Identifier:
1569618
Report Number(s):
LA-UR-19-23947
Journal ID: ISSN 0741-3335; TRN: US2100273
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Plasma Physics and Controlled Fusion
Additional Journal Information:
Journal Volume: 61; Journal Issue: 9; Journal ID: ISSN 0741-3335
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Magnetic Fusion Energy; ice pellet injection; central particle fueling; particle transport in an advanced stellarator

Citation Formats

Baldzuhn, J., Damm, H., Beidler, C. D., McCarthy, K., Panadero, N., Biedermann, C., Bozhenkov, S. A., Brunner, K. J., Fuchert, G., Kazakov, Y., Beurskens, M., Dibon, M., Geiger, J., Grulke, O., Höfel, U., Klinger, T., Köchl, F., Knauer, J., Kocsis, G., Kornejew, P., Lang, P. T., Langenberg, A., Laqua, H., Pablant, N. A., Pasch, E., Pedersen, T. S., Ploeckl, B., Rahbarnia, K., Schlisio, G., Scott, E. R., Stange, T., von Stechow, A., Szepesi, T., Turkin, Y., Wagner, F., Winters, V., Wurden, Glen Anthony, and Zhang, D. Pellet fueling experiments in Wendelstein 7-X. United States: N. p., 2019. Web. doi:10.1088/1361-6587/ab3567.
Baldzuhn, J., Damm, H., Beidler, C. D., McCarthy, K., Panadero, N., Biedermann, C., Bozhenkov, S. A., Brunner, K. J., Fuchert, G., Kazakov, Y., Beurskens, M., Dibon, M., Geiger, J., Grulke, O., Höfel, U., Klinger, T., Köchl, F., Knauer, J., Kocsis, G., Kornejew, P., Lang, P. T., Langenberg, A., Laqua, H., Pablant, N. A., Pasch, E., Pedersen, T. S., Ploeckl, B., Rahbarnia, K., Schlisio, G., Scott, E. R., Stange, T., von Stechow, A., Szepesi, T., Turkin, Y., Wagner, F., Winters, V., Wurden, Glen Anthony, & Zhang, D. Pellet fueling experiments in Wendelstein 7-X. United States. https://doi.org/10.1088/1361-6587/ab3567
Baldzuhn, J., Damm, H., Beidler, C. D., McCarthy, K., Panadero, N., Biedermann, C., Bozhenkov, S. A., Brunner, K. J., Fuchert, G., Kazakov, Y., Beurskens, M., Dibon, M., Geiger, J., Grulke, O., Höfel, U., Klinger, T., Köchl, F., Knauer, J., Kocsis, G., Kornejew, P., Lang, P. T., Langenberg, A., Laqua, H., Pablant, N. A., Pasch, E., Pedersen, T. S., Ploeckl, B., Rahbarnia, K., Schlisio, G., Scott, E. R., Stange, T., von Stechow, A., Szepesi, T., Turkin, Y., Wagner, F., Winters, V., Wurden, Glen Anthony, and Zhang, D. Tue . "Pellet fueling experiments in Wendelstein 7-X". United States. https://doi.org/10.1088/1361-6587/ab3567. https://www.osti.gov/servlets/purl/1569618.
@article{osti_1569618,
title = {Pellet fueling experiments in Wendelstein 7-X},
author = {Baldzuhn, J. and Damm, H. and Beidler, C. D. and McCarthy, K. and Panadero, N. and Biedermann, C. and Bozhenkov, S. A. and Brunner, K. J. and Fuchert, G. and Kazakov, Y. and Beurskens, M. and Dibon, M. and Geiger, J. and Grulke, O. and Höfel, U. and Klinger, T. and Köchl, F. and Knauer, J. and Kocsis, G. and Kornejew, P. and Lang, P. T. and Langenberg, A. and Laqua, H. and Pablant, N. A. and Pasch, E. and Pedersen, T. S. and Ploeckl, B. and Rahbarnia, K. and Schlisio, G. and Scott, E. R. and Stange, T. and von Stechow, A. and Szepesi, T. and Turkin, Y. and Wagner, F. and Winters, V. and Wurden, Glen Anthony and Zhang, D.},
abstractNote = {During the two most recent experimental campaigns in the advanced stellarator Wendelstein 7-X (W7-X) (Klinger et al 2017 Plasma Phys. Control. Fusion 59 014018; Bosch et al 2017 Nucl. Fusion 57 116015; Wolf et al 2017 Nucl. Fusion 57 102020; Pedersen et al 2017 Phys. Plasmas 24 0555030) hydrogen ice pellet injection was performed for the first time. In order to investigate the potential of pellet fueling in W7-X and to study the particle deposition in a large stellarator, a blower-gun system was installed with 40 pellets capability. The experience gained with this system will be used for the specification of a future steady-state pellet injector system. One important motivation for a pellet injector (Dibon 2014 Master-Thesis Technical University Munich, Max-Planck Institut IPP) on W7-X is the mitigation of hollow density profiles expected in case of predominant neoclassical transport. For long-pulse operation of up to 30 min, only electron cyclotron resonance heating is available on W7-X. Hence, pellet injection will be the only source for deep particle fueling. Deep particle fueling by pellets in tokamaks is supported by a grad-B drift, if the pellets are injected from the magnetic high-field-side. This approach was tested in W7-X, as well. The injection of series of pellets was also tested. Here, deep fueling is supported for later pellets in the series by the plasma cooling following the initial pellets in the same series. As in earlier experiments in the heliotron LHD (Takeiri et al 2017 Nucl. Fusion 57 102023), deep and rapid fueling could be achieved successfully in W7-X.},
doi = {10.1088/1361-6587/ab3567},
journal = {Plasma Physics and Controlled Fusion},
number = 9,
volume = 61,
place = {United States},
year = {Tue Aug 13 00:00:00 EDT 2019},
month = {Tue Aug 13 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Sketch showing the installation of the blower-gun in the diagnostics hall adjacent to the W7-X torus hall. The halls are separated by a 1.8 m thick concrete wall. The two guide tubes with an outer diameter (dia) of 10 mm (horizontal black lines) pass through a hole inmore » the wall of the torus hall to W7-X with 80 mm diameter. Because of the length of these tubes, shorter pieces with a length between 3 and 5 m are connected together by Conflat CF40 vacuum flanges. Four of these flanges are shown. Also shown are the two microwave systems, drag turbo pumping stations and the two gate valves at the two pellet entrance ports AEK41 (LFS) and AEL41 (HFS). Not to scale.« less

Save / Share:

Works referenced in this record:

Blower Gun pellet injection system for W7-X
journal, October 2015


Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellarator
journal, October 2010

  • Zhang, D.; Burhenn, R.; Koenig, R.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3483194

(Expected difficulties with) density-profile control in W7-X high-performance plasmas
journal, August 2018

  • Beidler, C. D.; Feng, Y.; Geiger, J.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 10
  • DOI: 10.1088/1361-6587/aad970

Density limits in toroidal plasmas
journal, July 2002


Particle fueling experiments with a series of pellets in LHD
journal, January 2018

  • Baldzuhn, J.; Damm, H.; Dinklage, A.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 3
  • DOI: 10.1088/1361-6587/aaa184

Comparison of pellet acceleration model results to experimentally observed penetration depths
journal, June 2009


Electron-cyclotron-resonance heating in Wendelstein 7-X: A versatile heating and current-drive method and a tool for in-depth physics studies
journal, November 2018

  • Wolf, R. C.; Bozhenkov, S.; Dinklage, A.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aaeab2

Performance and properties of the first plasmas of Wendelstein 7-X
journal, October 2016


Final integration, commissioning and start of the Wendelstein 7-X stellarator operation
journal, August 2017


Prospects of X-ray imaging spectrometers for impurity transport: Recent results from the stellarator Wendelstein 7-X (invited)
journal, October 2018

  • Langenberg, A.; Pablant, N. A.; Wegner, Th.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5036536

The history of research into improved confinement regimes
text, January 2017


Modelling of pellet ablation in additionally heated plasmas
journal, December 2004

  • Pégourié, B.; Waller, V.; Dumont, R. J.
  • Plasma Physics and Controlled Fusion, Vol. 47, Issue 1
  • DOI: 10.1088/0741-3335/47/1/002

Physics optimization of stellarators
journal, March 1992

  • Grieger, G.; Lotz, W.; Merkel, P.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 7
  • DOI: 10.1063/1.860481

Extension of the operational regime of the LHD towards a deuterium experiment
journal, August 2017


Service oriented architecture for scientific analysis at W7-X. An example of a field line tracer
journal, November 2013


Characterization of energy confinement in net-current free plasmas using the extended International Stellarator Database
journal, November 2005


First results from divertor operation in Wendelstein 7-X
journal, November 2018

  • Pedersen, Thomas Sunn; König, Ralf; Krychowiak, Maciej
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aaec25

The history of research into improved confinement regimes
journal, January 2017


A comprehensive study on impurity behavior in LHD long pulse discharges
journal, August 2017


High-Efficiency Plasma Refuelling by Pellet Injection from the Magnetic High-Field Side into ASDEX Upgrade
journal, August 1997


Density control problems in large stellarators with neoclassical transport
journal, August 1999

  • Maaßberg, H.; Beidler, C. D.; Simmet, E. E.
  • Plasma Physics and Controlled Fusion, Vol. 41, Issue 9
  • DOI: 10.1088/0741-3335/41/9/306

Repetitive pellet fuelling for high-density/steady-state operation on LHD
journal, September 2006


Observation of Stable Superdense Core Plasmas in the Large Helical Device
journal, August 2006


Technique for measuring D2 pellet mass loss through a curved guide tube using two microwave cavity detectors
journal, July 2006

  • Combs, S. K.; Caughman, J. B. O.; Wilgen, J. B.
  • Review of Scientific Instruments, Vol. 77, Issue 7
  • DOI: 10.1063/1.2219748

Modelling of the pellet deposition profile and ∇ B -induced drift displacement in non-axisymmetric configurations
journal, November 2012


Experimental studies and simulations of hydrogen pellet ablation in the stellarator TJ-II
journal, January 2018


Key results from the first plasma operation phase and outlook for future performance in Wendelstein 7-X
journal, May 2017

  • Sunn Pedersen, Thomas; Dinklage, Andreas; Turkin, Yuriy
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983629

Overview video diagnostics for the W7-X stellarator
journal, October 2015


The Thomson scattering system at Wendelstein 7-X
journal, September 2016

  • Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4962248

Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade
journal, January 2018


Major results from the first plasma campaign of the Wendelstein 7-X stellarator
journal, July 2017


The impact of fast electrons on pellet injection in the stellarator TJ-II
journal, November 2018

  • McCarthy, K. J.; Panadero, N.; Combs, S. K.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aae038