skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on July 17, 2020

Title: Mesophase Structure-Enabled Electrostrictive Property in Nylon-12-Based Poly(ether- block-amide) Copolymers

Abstract

In this work, to search for alternative electrostrictive polymers and to understand the underlying mechanism, the structure-ferroelectric/electrostrictive property relationship for nylon-12-based poly(ether-b-amide) multiblock copolymers (PEBAX) is investigated. Two PEBAX samples are studied, namely, P6333 and P7033 with 37 and 25 mol.% of soft poly(tetramethylene oxide) (PTMO) blocks, respectively. In both samples, poorly hydrogen-bonded mesophase facilitates electric field-induced ferroelectric switching. Meanwhile, the longitudinal electrostrictive strain (S 1)–electric field (E) loops are obtained at 2 Hz. Different from conventional poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)]-based terpolymers, uniaxially stretched nylon-12-based PEBAX samples exhibit negative S 1, that is, shrinking rather than elongation in the longitudinal direction. Additionally, this is attributed to the unique conformation transformation of nylon-12 crystals during ferroelectric switching. Namely, at a zero electric field, crystalline nylon-12 chains adopt a more or less antiparallel arrangement of amide groups. Upon high-field poling, ferroelectric domains are enforced with more twisted chains adopting a parallel arrangement of amide groups. Meanwhile, extensional S 1 is observed for P6333 at electric fields above 150 MV m -1. This is attributed to the elongation of the amorphous phases (i.e., amorphous nylon-12 and PTMO). Therefore, competition between shrinking S 1 from mesomorphic nylon-12 crystals (i.e., nanoactuation) and elongational S 1 frommore » amorphous phases determines the ultimate electrostriction behavior in stretched PEBAX films.« less

Authors:
 [1];  [2];  [2];  [2];  [3];  [4];  [1]; ORCiD logo [2]
  1. Chulalongkorn Univ., Bangkok (Thailand)
  2. Case Western Reserve Univ., Cleveland, OH (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
  4. National Metal and Materials Technology Center, Pathumthani (Thailand)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1569557
Alternate Identifier(s):
OSTI ID: 1543041
Report Number(s):
BNL-212138-2019-JAAM
Journal ID: ISSN 1438-7492
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Macromolecular Materials and Engineering
Additional Journal Information:
Journal Volume: 304; Journal Issue: 9; Journal ID: ISSN 1438-7492
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; electrostriction; polyamide elastomers; semicrystalline structure

Citation Formats

Wongwirat, Thumawadee, Wang, Minghuan, Huang, Yanfei, Treufeld, Imre, Li, Ruipeng, Laoratanakul, Pitak, Manuspiya, Hathaikarn, and Zhu, Lei. Mesophase Structure-Enabled Electrostrictive Property in Nylon-12-Based Poly(ether-block-amide) Copolymers. United States: N. p., 2019. Web. doi:10.1002/mame.201900330.
Wongwirat, Thumawadee, Wang, Minghuan, Huang, Yanfei, Treufeld, Imre, Li, Ruipeng, Laoratanakul, Pitak, Manuspiya, Hathaikarn, & Zhu, Lei. Mesophase Structure-Enabled Electrostrictive Property in Nylon-12-Based Poly(ether-block-amide) Copolymers. United States. doi:10.1002/mame.201900330.
Wongwirat, Thumawadee, Wang, Minghuan, Huang, Yanfei, Treufeld, Imre, Li, Ruipeng, Laoratanakul, Pitak, Manuspiya, Hathaikarn, and Zhu, Lei. Wed . "Mesophase Structure-Enabled Electrostrictive Property in Nylon-12-Based Poly(ether-block-amide) Copolymers". United States. doi:10.1002/mame.201900330.
@article{osti_1569557,
title = {Mesophase Structure-Enabled Electrostrictive Property in Nylon-12-Based Poly(ether-block-amide) Copolymers},
author = {Wongwirat, Thumawadee and Wang, Minghuan and Huang, Yanfei and Treufeld, Imre and Li, Ruipeng and Laoratanakul, Pitak and Manuspiya, Hathaikarn and Zhu, Lei},
abstractNote = {In this work, to search for alternative electrostrictive polymers and to understand the underlying mechanism, the structure-ferroelectric/electrostrictive property relationship for nylon-12-based poly(ether-b-amide) multiblock copolymers (PEBAX) is investigated. Two PEBAX samples are studied, namely, P6333 and P7033 with 37 and 25 mol.% of soft poly(tetramethylene oxide) (PTMO) blocks, respectively. In both samples, poorly hydrogen-bonded mesophase facilitates electric field-induced ferroelectric switching. Meanwhile, the longitudinal electrostrictive strain (S1)–electric field (E) loops are obtained at 2 Hz. Different from conventional poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)]-based terpolymers, uniaxially stretched nylon-12-based PEBAX samples exhibit negative S1, that is, shrinking rather than elongation in the longitudinal direction. Additionally, this is attributed to the unique conformation transformation of nylon-12 crystals during ferroelectric switching. Namely, at a zero electric field, crystalline nylon-12 chains adopt a more or less antiparallel arrangement of amide groups. Upon high-field poling, ferroelectric domains are enforced with more twisted chains adopting a parallel arrangement of amide groups. Meanwhile, extensional S1 is observed for P6333 at electric fields above 150 MV m-1. This is attributed to the elongation of the amorphous phases (i.e., amorphous nylon-12 and PTMO). Therefore, competition between shrinking S1 from mesomorphic nylon-12 crystals (i.e., nanoactuation) and elongational S1 from amorphous phases determines the ultimate electrostriction behavior in stretched PEBAX films.},
doi = {10.1002/mame.201900330},
journal = {Macromolecular Materials and Engineering},
number = 9,
volume = 304,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 17, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Electroactive Polymer Actuators and Sensors
journal, March 2008


High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%
journal, February 2000


Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles
journal, November 2012


Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review
journal, December 1998

  • Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J. O.
  • Smart Materials and Structures, Vol. 7, Issue 6
  • DOI: 10.1088/0964-1726/7/6/001

High-strain ionomeric–ionic liquid electroactive actuators
journal, January 2006

  • Akle, Barbar J.; Bennett, Matthew D.; Leo, Donald J.
  • Sensors and Actuators A: Physical, Vol. 126, Issue 1
  • DOI: 10.1016/j.sna.2005.09.006

Experimental Investigation on Electrochemical Properties of Ionic Polymer–Metal Composite
journal, May 2006

  • Kim, Doyeon; Kim, Kwang J.
  • Journal of Intelligent Material Systems and Structures, Vol. 17, Issue 5
  • DOI: 10.1177/1045389X06058871

Visualizing Ion Currents in Conjugated Polymers
journal, September 2004


An all-organic composite actuator material with a high dielectric constant
journal, September 2002

  • Zhang, Q. M.; Li, Hengfeng; Poh, Martin
  • Nature, Vol. 419, Issue 6904
  • DOI: 10.1038/nature01021

Microfabricating Conjugated Polymer Actuators
journal, November 2000


Electroactive polymer based microfluidic pump
journal, January 2006

  • Xia, Feng; Tadigadapa, Srinivas; Zhang, Q. M.
  • Sensors and Actuators A: Physical, Vol. 125, Issue 2
  • DOI: 10.1016/j.sna.2005.06.026

Varifocal liquid-filled microlens operated by an electroactive polymer actuator
journal, January 2011

  • Choi, Seung Tae; Lee, Jeong Yub; Kwon, Jong Oh
  • Optics Letters, Vol. 36, Issue 10
  • DOI: 10.1364/OL.36.001920

Multilayered relaxor ferroelectric polymer actuators for low-voltage operation fabricated with an adhesion-mediated film transfer technique
journal, December 2013

  • Choi, Seung Tae; Kwon, Jong Oh; Bauer, François
  • Sensors and Actuators A: Physical, Vol. 203
  • DOI: 10.1016/j.sna.2013.08.049

Investigation of electrostrictive polymers for energy harvesting
journal, December 2005

  • Yiming Liu, ; Hofmann, H. F.
  • IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 52, Issue 12
  • DOI: 10.1109/TUFFC.2005.1563285

An active energy harvesting scheme with an electroactive polymer
journal, September 2007

  • Ren, Kailiang; Liu, Yiming; Hofmann, H.
  • Applied Physics Letters, Vol. 91, Issue 13
  • DOI: 10.1063/1.2793172

Electrostrictive polymers for mechanical energy harvesting
journal, February 2012

  • Lallart, Mickaël; Cottinet, Pierre-Jean; Guyomar, Daniel
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 50, Issue 8
  • DOI: 10.1002/polb.23045

Stretchable, Transparent, Ionic Conductors
journal, August 2013


Enhanced Dielectric and Electromechanical Responses in High Dielectric Constant All-Polymer Percolative Composites
journal, May 2004


High-dielectric-constant ceramic-powder polymer composites
journal, June 2000

  • Bai, Y.; Cheng, Z. -Y.; Bharti, V.
  • Applied Physics Letters, Vol. 76, Issue 25
  • DOI: 10.1063/1.126787

Enhanced electromechanical properties in all-polymer percolative composites
journal, April 2004

  • Li, Jiang Yu; Huang, Cheng; Zhang, Qiming
  • Applied Physics Letters, Vol. 84, Issue 16
  • DOI: 10.1063/1.1702127

Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites
journal, October 2005

  • Huang, Cheng; Zhang, Q. M.; Li, Jiang Yu
  • Applied Physics Letters, Vol. 87, Issue 18
  • DOI: 10.1063/1.2105997

Characteristics of the electromechanical response and polarization of electric field biased ferroelectrics
journal, March 1995

  • Zhang, Q. M.; Zhao, J.; Shrout, T.
  • Journal of Applied Physics, Vol. 77, Issue 6
  • DOI: 10.1063/1.358785

Ferroelectric Polymers
journal, June 1983


Ferroelectric properties of vinylidene fluoride copolymers
journal, August 1989


Ferroelectric and electromechanical properties of poly(vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer
journal, April 2001

  • Xu, Haisheng; Cheng, Z. -Y.; Olson, Dana
  • Applied Physics Letters, Vol. 78, Issue 16
  • DOI: 10.1063/1.1358847

High-field deformation of elastomeric dielectrics for actuators
journal, November 2000


Theory of dielectric elastomers
journal, December 2010


Advances in Dielectric Elastomers for Actuators and Artificial Muscles
journal, January 2010


Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene)
journal, September 1993

  • Wang, H.; Zhang, Q. M.; Cross, L. E.
  • Journal of Applied Physics, Vol. 74, Issue 5
  • DOI: 10.1063/1.354566

Viscoelastic effect and creep elimination of dielectric elastomers in adversarial resonance
journal, October 2016

  • Liu, Lei; Li, Bo; Sun, Wenjie
  • Journal of Applied Physics, Vol. 120, Issue 16
  • DOI: 10.1063/1.4965724

Understanding reversible Maxwellian electroactuation in a 3M VHB dielectric elastomer with prestrain
journal, May 2018


Large electrostrictive strain at gigahertz frequencies in a polymer nanoactuator: Computational device design
journal, February 2005

  • Strachan, Alejandro; Goddard, William A.
  • Applied Physics Letters, Vol. 86, Issue 8
  • DOI: 10.1063/1.1862343

Electrostrictive effect in polyurethanes
journal, April 2003

  • Guillot, F. M.; Balizer, E.
  • Journal of Applied Polymer Science, Vol. 89, Issue 2
  • DOI: 10.1002/app.12096

Electrostriction of a Polyurethane Elastomer-Based Polyester
journal, August 2006


Physical modeling of the electromechanical behavior of polar heterogeneous polymers
journal, December 2012

  • Diguet, Gildas; Bogner, Agnes; Chenal, Jean-Marc
  • Journal of Applied Physics, Vol. 112, Issue 11
  • DOI: 10.1063/1.4766280

Modeling of segmented pure polyurethane electrostriction behaviors based on their nanostructural properties
journal, April 2015


Understanding the Paraelectric Double Hysteresis Loop Behavior in Mesomorphic Even-Numbered Nylons at High Temperatures
journal, July 2017


Achieving Relaxor Ferroelectric-like Behavior in Nylon Random Copolymers and Terpolymers
journal, December 2017


Gas permeability of melt-processed poly(ether block amide) copolymers and the effects of orientation
journal, March 2012


Solid state structure–property behavior of semicrystalline poly(ether-block-amide) PEBAX® thermoplastic elastomers
journal, January 2003


Transverse strain responses in electrostrictive poly(vinylidene fluoride-trifluoroethylene) films and development of a dilatometer for the measurement
journal, August 1999

  • Cheng, Z. -Y.; Bharti, Vivek; Xu, T. -B.
  • Journal of Applied Physics, Vol. 86, Issue 4
  • DOI: 10.1063/1.371032

Unified Understanding of Ferroelectricity in n -Nylons: Is the Polar Crystalline Structure a Prerequisite?
journal, April 2016


High electrostrictive strain under high mechanical stress in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer
journal, October 1999

  • Bharti, Vivek; Cheng, Z. -Y.; Gross, S.
  • Applied Physics Letters, Vol. 75, Issue 17
  • DOI: 10.1063/1.125108

Electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymers
journal, May 2001


Plasticized relaxor ferroelectric terpolymer: Toward giant electrostriction, high mechanical energy and low electric field actuators
journal, March 2014

  • Capsal, Jean-Fabien; Galineau, Jérémy; Lallart, Mickaël
  • Sensors and Actuators A: Physical, Vol. 207
  • DOI: 10.1016/j.sna.2013.12.008

Enhanced electromechanical performances in plasticizer modified electrostrictive polymers
journal, March 2016


Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect
journal, March 2013


Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics
journal, October 2014

  • Zhu, Lei
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21
  • DOI: 10.1021/jz501831q