skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 19, 2020

Title: A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change

Abstract

Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. In this study, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO 2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO 2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO 2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple globalmore » change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7];  [8];  [9]; ORCiD logo [10]; ORCiD logo [11];  [12]; ORCiD logo [13];  [13];  [14];  [15];  [16]; ORCiD logo [17]; ORCiD logo [18] more »;  [19];  [20]; ORCiD logo [21];  [22];  [23]; ORCiD logo [24]; ORCiD logo [3]; ORCiD logo [25];  [26]; ORCiD logo [27]; ORCiD logo [28];  [29]; ORCiD logo [30]; ORCiD logo [31];  [32];  [33];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13];  [13] « less
  1. Hebei Univ., Boading (China). College of Life Sciences; Henan Univ., Kaifeng (China). School of Life Sciences, International Joint Research Lab. for Global Change Ecology
  2. Peking Univ, Beijing (China). College of Urban and Environmental Sciences, Sino-French Inst. for Earth System Science; Chinese Academy of Sciences, Beijing (China). Center for Excellence in Tibetan Earth Science and Inst. of Tibetan Plateau Research, Key Lab. of Alpine Ecology
  3. Colorado State Univ., Fort Collins, CO (United States). Dept. of Biology and Graduate Degree Program in Ecology
  4. Univ. of Vermont, Burlington, VT (United States). Rubenstein School of Environment and Natural Resources and Gund Inst. for Environment
  5. Univ. of Antwerp, Wilrijk (Belgium). Dept. of Biology, Centre of Excellence Plant and Vegetation Ecology (PLECO)
  6. Peking Univ, Beijing (China). College of Urban and Environmental Sciences, Sino-French Inst. for Earth System Science; Lab. des Sciences du Climat et de l’Environnement, Gif sur Yvette (France)
  7. Univ. of Tasmania, Hobart (Australia). School of Natural Sciences, Biological Sciences
  8. Auckland Univ. of Technology, Auckland (New Zealand). School of Science, Inst. for Applied Ecology New Zealand
  9. Univ. of Copenhagen, Copenhagen (Denmark). Dept. of Geosciences and Natural Resource Management
  10. Swedish Univ. of Agricultural Sciences, Umeå (Sweden). Dept. of Forest Ecology and Management
  11. East China Normal Univ., Shanghai (China). School of Ecological and Environmental Sciences, Shanghai Key Lab. for Urban Ecological Processes and Eco-Restoration, and Research Center for Global Change and Ecological Forecasting
  12. Peking Univ, Beijing (China). College of Urban and Environmental Sciences, Sino-French Inst. for Earth System Science
  13. Henan Univ., Kaifeng (China). School of Life Sciences, International Joint Research Lab. for Global Change Ecology
  14. Northern Arizona Univ., Flagstaff, AZ (United States). Dept. of Biological Sciences, Center for Ecosystem Study and Society
  15. Chinese Academy of Sciences, Beijing (China). Inst. of Geographic Sciences and Natural Resources Research, Key Lab. of Ecosystem Network Observation and Modeling, Center for Forest Ecosystem Studies
  16. Villanova Univ., Villanova, PA (United States). Dept. of Biology
  17. ETH, Zürich (Switzerland). Inst. for Atmospheric and Climate Science; Univ. of Bern, Bern (Switzerland). Climate and Environmental Physics
  18. Purdue Univ., West Lafayette, IN (United States). Dept. of Forestry and Natural Resources and Dept. of Biological Sciences
  19. The Ecosystem Center, Woods Hole, MA (United States). Marine Biological Lab.
  20. Michigan State Univ., East Lansing, MI (United States). Dept. of Geography, Environment and Spatial Sciences, Center for Global Change and Earth Observations
  21. Iowa State Univ., Ames, IA (United States). Dept. of Ecology, Evolution, and Organismal Biology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab.
  22. Univ. of California, Berkeley, CA (United States). Energy and Resources Group; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Climate and Ecosystem Sciences Division
  23. United States Dept. of Agriculture Forest Service, Durham, NH (United States). Northern Research Station
  24. Chinese Academy of Sciences, Beijing (China). Inst. of Botany, State Key Lab. of Vegetation and Environmental Change
  25. Boston Univ., Boston, MA (United States). Dept. of Biology
  26. Virginia Tech, Blacksburg, VA (United States). Dept. of Forest Resources and Environmental Conservation
  27. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division and Climate Change Science Inst.
  28. Indiana Univ., Bloomington, IN (United States). Dept. of Biology
  29. Chinese Academy of Sciences, Beijing (China). Inst. of Geographic Sciences and Natural Resources Research, Key Lab. of Ecosystem Network Observation and Modeling
  30. ETH, Zurich (Switzerland). Inst. of Environmental Engineering
  31. CSIRO Oceans and Atmosphere, Victoria (Australia)
  32. Binzhou Univ, Binzhou (China). Shandong Key Lab. of Eco-Environmental Science for the Yellow River Delta
  33. Binzhou Univ, Binzhou (China). Shandong Key Lab. of Eco-Environmental Science for the Yellow River Delta
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1569379
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Ecology and Evolution
Additional Journal Information:
Journal Volume: 3; Journal Issue: 9; Journal ID: ISSN 2397-334X
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Song, Jian, Wan, Shiqiang, Piao, Shilong, Knapp, Alan K., Classen, Aimée T., Vicca, Sara, Ciais, Philippe, Hovenden, Mark J., Leuzinger, Sebastian, Beier, Claus, Kardol, Paul, Xia, Jianyang, Liu, Qiang, Ru, Jingyi, Zhou, Zhenxing, Luo, Yiqi, Guo, Dali, Adam Langley, J., Zscheischler, Jakob, Dukes, Jeffrey S., Tang, Jianwu, Chen, Jiquan, Hofmockel, Kirsten S., Kueppers, Lara M., Rustad, Lindsey, Liu, Lingli, Smith, Melinda D., Templer, Pamela H., Quinn Thomas, R., Norby, Richard J., Phillips, Richard P., Niu, Shuli, Fatichi, Simone, Wang, Yingping, Shao, Pengshuai, Han, Hongyan, Wang, Dandan, Lei, Lingjie, Wang, Jiali, Li, Xiaona, Zhang, Qian, Li, Xiaoming, Su, Fanglong, Liu, Bin, Yang, Fan, Ma, Gaigai, Li, Guoyong, Liu, Yanchun, Liu, Yinzhan, Yang, Zhongling, Zhang, Kesheng, Miao, Yuan, Hu, Mengjun, Yan, Chuang, Zhang, Ang, Zhong, Mingxing, Hui, Yan, Li, Ying, and Zheng, Mengmei. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. United States: N. p., 2019. Web. doi:10.1038/s41559-019-0958-3.
Song, Jian, Wan, Shiqiang, Piao, Shilong, Knapp, Alan K., Classen, Aimée T., Vicca, Sara, Ciais, Philippe, Hovenden, Mark J., Leuzinger, Sebastian, Beier, Claus, Kardol, Paul, Xia, Jianyang, Liu, Qiang, Ru, Jingyi, Zhou, Zhenxing, Luo, Yiqi, Guo, Dali, Adam Langley, J., Zscheischler, Jakob, Dukes, Jeffrey S., Tang, Jianwu, Chen, Jiquan, Hofmockel, Kirsten S., Kueppers, Lara M., Rustad, Lindsey, Liu, Lingli, Smith, Melinda D., Templer, Pamela H., Quinn Thomas, R., Norby, Richard J., Phillips, Richard P., Niu, Shuli, Fatichi, Simone, Wang, Yingping, Shao, Pengshuai, Han, Hongyan, Wang, Dandan, Lei, Lingjie, Wang, Jiali, Li, Xiaona, Zhang, Qian, Li, Xiaoming, Su, Fanglong, Liu, Bin, Yang, Fan, Ma, Gaigai, Li, Guoyong, Liu, Yanchun, Liu, Yinzhan, Yang, Zhongling, Zhang, Kesheng, Miao, Yuan, Hu, Mengjun, Yan, Chuang, Zhang, Ang, Zhong, Mingxing, Hui, Yan, Li, Ying, & Zheng, Mengmei. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. United States. doi:10.1038/s41559-019-0958-3.
Song, Jian, Wan, Shiqiang, Piao, Shilong, Knapp, Alan K., Classen, Aimée T., Vicca, Sara, Ciais, Philippe, Hovenden, Mark J., Leuzinger, Sebastian, Beier, Claus, Kardol, Paul, Xia, Jianyang, Liu, Qiang, Ru, Jingyi, Zhou, Zhenxing, Luo, Yiqi, Guo, Dali, Adam Langley, J., Zscheischler, Jakob, Dukes, Jeffrey S., Tang, Jianwu, Chen, Jiquan, Hofmockel, Kirsten S., Kueppers, Lara M., Rustad, Lindsey, Liu, Lingli, Smith, Melinda D., Templer, Pamela H., Quinn Thomas, R., Norby, Richard J., Phillips, Richard P., Niu, Shuli, Fatichi, Simone, Wang, Yingping, Shao, Pengshuai, Han, Hongyan, Wang, Dandan, Lei, Lingjie, Wang, Jiali, Li, Xiaona, Zhang, Qian, Li, Xiaoming, Su, Fanglong, Liu, Bin, Yang, Fan, Ma, Gaigai, Li, Guoyong, Liu, Yanchun, Liu, Yinzhan, Yang, Zhongling, Zhang, Kesheng, Miao, Yuan, Hu, Mengjun, Yan, Chuang, Zhang, Ang, Zhong, Mingxing, Hui, Yan, Li, Ying, and Zheng, Mengmei. Mon . "A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change". United States. doi:10.1038/s41559-019-0958-3.
@article{osti_1569379,
title = {A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change},
author = {Song, Jian and Wan, Shiqiang and Piao, Shilong and Knapp, Alan K. and Classen, Aimée T. and Vicca, Sara and Ciais, Philippe and Hovenden, Mark J. and Leuzinger, Sebastian and Beier, Claus and Kardol, Paul and Xia, Jianyang and Liu, Qiang and Ru, Jingyi and Zhou, Zhenxing and Luo, Yiqi and Guo, Dali and Adam Langley, J. and Zscheischler, Jakob and Dukes, Jeffrey S. and Tang, Jianwu and Chen, Jiquan and Hofmockel, Kirsten S. and Kueppers, Lara M. and Rustad, Lindsey and Liu, Lingli and Smith, Melinda D. and Templer, Pamela H. and Quinn Thomas, R. and Norby, Richard J. and Phillips, Richard P. and Niu, Shuli and Fatichi, Simone and Wang, Yingping and Shao, Pengshuai and Han, Hongyan and Wang, Dandan and Lei, Lingjie and Wang, Jiali and Li, Xiaona and Zhang, Qian and Li, Xiaoming and Su, Fanglong and Liu, Bin and Yang, Fan and Ma, Gaigai and Li, Guoyong and Liu, Yanchun and Liu, Yinzhan and Yang, Zhongling and Zhang, Kesheng and Miao, Yuan and Hu, Mengjun and Yan, Chuang and Zhang, Ang and Zhong, Mingxing and Hui, Yan and Li, Ying and Zheng, Mengmei},
abstractNote = {Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. In this study, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.},
doi = {10.1038/s41559-019-0958-3},
journal = {Nature Ecology and Evolution},
number = 9,
volume = 3,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 19, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A two-fold increase of carbon cycle sensitivity to tropical temperature variations
journal, January 2014

  • Wang, Xuhui; Piao, Shilong; Ciais, Philippe
  • Nature, Vol. 506, Issue 7487
  • DOI: 10.1038/nature12915

Interactive effects of global change factors on soil respiration and its components: a meta-analysis
journal, March 2016

  • Zhou, Lingyan; Zhou, Xuhui; Shao, Junjiong
  • Global Change Biology, Vol. 22, Issue 9
  • DOI: 10.1111/gcb.13253

Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture
journal, October 2018


Does the growth response of woody plants to elevated CO 2 increase with temperature? A model-oriented meta-analysis
journal, September 2015

  • Baig, Sofia; Medlyn, Belinda E.; Mercado, Lina M.
  • Global Change Biology, Vol. 21, Issue 12
  • DOI: 10.1111/gcb.12962

Using ecosystem experiments to improve vegetation models
journal, May 2015

  • Medlyn, Belinda E.; Zaehle, Sönke; De Kauwe, Martin G.
  • Nature Climate Change, Vol. 5, Issue 6
  • DOI: 10.1038/nclimate2621

Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level
journal, July 2010


A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology
journal, January 1998


Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Improving the representation of roots in terrestrial models
journal, November 2014


Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common
journal, March 2017

  • Yue, Kai; Fornara, Dario A.; Yang, Wanqin
  • Ecology Letters, Vol. 20, Issue 5
  • DOI: 10.1111/ele.12767

Predicting Ecosystem Responses to Elevated CO 2 Concentrations
journal, February 1991

  • Mooney, H. A.; Drake, B. G.; Luxmoore, R. J.
  • BioScience, Vol. 41, Issue 2
  • DOI: 10.2307/1311562

Soil microbial respiration adapts to ambient temperature in global drylands
journal, January 2019


Experiments to confront the environmental extremes of climate change
journal, May 2015

  • Kayler, Zachary E.; De Boeck, Hans J.; Fatichi, Simone
  • Frontiers in Ecology and the Environment, Vol. 13, Issue 4
  • DOI: 10.1890/140174

Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways
journal, August 2011

  • Lamarque, Jean-François; Kyle, G. Page; Meinshausen, Malte
  • Climatic Change, Vol. 109, Issue 1-2
  • DOI: 10.1007/s10584-011-0155-0

Tree carbon allocation explains forest drought-kill and recovery patterns
journal, August 2018

  • Trugman, A. T.; Detto, M.; Bartlett, M. K.
  • Ecology Letters, Vol. 21, Issue 10
  • DOI: 10.1111/ele.13136

Using results from global change experiments to inform land model development and calibration
journal, November 2014

  • Dukes, Jeffrey S.; Classen, Aimée T.; Wan, Shiqiang
  • New Phytologist, Vol. 204, Issue 4
  • DOI: 10.1111/nph.13083

Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO 2 and temperature
journal, June 2012


To replicate, or not to replicate - that is the question: how to tackle nonlinear responses in ecological experiments
journal, August 2018

  • Kreyling, Juergen; Schweiger, Andreas H.; Bahn, Michael
  • Ecology Letters, Vol. 21, Issue 11
  • DOI: 10.1111/ele.13134

Precipitation manipulation experiments - challenges and recommendations for the future
journal, May 2012


Convergence across biomes to a common rain-use efficiency
journal, June 2004

  • Huxman, Travis E.; Smith, Melinda D.; Fay, Philip A.
  • Nature, Vol. 429, Issue 6992
  • DOI: 10.1038/nature02561

Means and extremes: building variability into community-level climate change experiments
journal, February 2013

  • Thompson, Ross M.; Beardall, John; Beringer, Jason
  • Ecology Letters, Vol. 16, Issue 6
  • DOI: 10.1111/ele.12095

Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO 2
journal, October 2016

  • Fatichi, Simone; Leuzinger, Sebastian; Paschalis, Athanasios
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 45
  • DOI: 10.1073/pnas.1605036113

Shrubland primary production and soil respiration diverge along European climate gradient
journal, March 2017

  • Reinsch, Sabine; Koller, Eva; Sowerby, Alwyn
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep43952

A reality check for climate change experiments: Do they reflect the real world?
journal, September 2018

  • Knapp, Alan K.; Carroll, Charles J. W.; Griffin-Nolan, Robert J.
  • Ecology, Vol. 99, Issue 10
  • DOI: 10.1002/ecy.2474

Mycorrhizal association as a primary control of the CO 2 fertilization effect
journal, June 2016


Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems
journal, December 2009


Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions
journal, December 2016

  • Obermeier, W. A.; Lehnert, L. W.; Kammann, C. I.
  • Nature Climate Change, Vol. 7, Issue 2
  • DOI: 10.1038/nclimate3191

Effects of elevated CO 2 and N fertilization on plant and soil carbon pools of managed grasslands: a meta-analysis
journal, January 2012


Carbon allocation in forest ecosystems
journal, October 2007


Model-data synthesis for the next generation of forest free-air CO 2 enrichment (FACE) experiments
journal, August 2015

  • Norby, Richard J.; De Kauwe, Martin G.; Domingues, Tomas F.
  • New Phytologist, Vol. 209, Issue 1
  • DOI: 10.1111/nph.13593

Warming accelerates decomposition of decades-old carbon in forest soils
journal, June 2012

  • Hopkins, F. M.; Torn, M. S.; Trumbore, S. E.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 26
  • DOI: 10.1073/pnas.1120603109

Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland
journal, January 2009


Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE
journal, April 2009

  • Leakey, Andrew D. B.; Ainsworth, Elizabeth A.; Bernacchi, Carl J.
  • Journal of Experimental Botany, Vol. 60, Issue 10
  • DOI: 10.1093/jxb/erp096

Do global change experiments overestimate impacts on terrestrial ecosystems?
journal, May 2011


A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes
journal, February 2016

  • Liu, Lingli; Wang, Xin; Lajeunesse, Marc J.
  • Global Change Biology, Vol. 22, Issue 4
  • DOI: 10.1111/gcb.13156

Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO 2 trends
journal, April 2013

  • Piao, Shilong; Sitch, Stephen; Ciais, Philippe
  • Global Change Biology, Vol. 19, Issue 7
  • DOI: 10.1111/gcb.12187

A new generation of climate-change experiments: events, not trends
journal, September 2007


Conducting Meta-Analyses in R with the metafor Package
journal, January 2010


Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems
journal, October 2008

  • Knapp, Alan K.; Beier, Claus; Briske, David D.
  • BioScience, Vol. 58, Issue 9
  • DOI: 10.1641/B580908

Favorable effect of mycorrhizae on biomass production efficiency exceeds their carbon cost in a fertilization experiment
journal, September 2018

  • Verlinden, Melanie S.; Ven, Arne; Verbruggen, Erik
  • Ecology, Vol. 99, Issue 11
  • DOI: 10.1002/ecy.2502

Grassland Responses to Global Environmental Changes Suppressed by Elevated CO2
journal, December 2002


Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration
journal, May 2014

  • Wang, Xin; Liu, Lingli; Piao, Shilong
  • Global Change Biology, Vol. 20, Issue 10
  • DOI: 10.1111/gcb.12620

ELEVATED CO 2 STIMULATES NET ACCUMULATIONS OF CARBON AND NITROGEN IN LAND ECOSYSTEMS: A META-ANALYSIS
journal, January 2006

  • Luo, Yiqi; Hui, Dafeng; Zhang, Deqiang
  • Ecology, Vol. 87, Issue 1
  • DOI: 10.1890/04-1724

Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2
journal, February 2019


Altered root traits due to elevated CO 2 : a meta-analysis : Root traits at elevated CO
journal, April 2013

  • Nie, Ming; Lu, Meng; Bell, Jennifer
  • Global Ecology and Biogeography, Vol. 22, Issue 10
  • DOI: 10.1111/geb.12062

Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments
journal, February 2015


Global Change Experiments: Challenges and Opportunities
journal, July 2015


Climate warming and biomass accumulation of terrestrial plants: a meta-analysis
journal, July 2010


Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift
journal, July 2010

  • Langley, J. Adam; Megonigal, J. Patrick
  • Nature, Vol. 466, Issue 7302
  • DOI: 10.1038/nature09176

Elevated CO2 increases carbon allocation to the roots of Lolium perenne under free-air CO2 enrichment but not in a controlled environment
journal, April 2002


Dynamic disequilibrium of the terrestrial carbon cycle under global change
journal, February 2011


Crossing the threshold: the power of multi‐level experiments in identifying global change responses
journal, August 2012


The Meta-Analysis of Response Ratios in Experimental Ecology
journal, June 1999


Tree responses to rising CO 2 in field experiments: implications for the future forest
journal, June 1999


Fertile forests produce biomass more efficiently: Forests’ biomass production efficiency
journal, April 2012


ATMOSPHERIC SCIENCE: Nitrogen and Climate Change
journal, November 2003


Urgent need for a common metric to make precipitation manipulation experiments comparable: Letters
journal, June 2012


Global response patterns of terrestrial plant species to nitrogen addition
journal, July 2008


Beyond realism in climate change experiments: gradient approaches identify thresholds and tipping points
journal, October 2013

  • Kreyling, Juergen; Jentsch, Anke; Beier, Claus
  • Ecology Letters, Vol. 17, Issue 1
  • DOI: 10.1111/ele.12193

Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls
journal, May 2018

  • Ye, Chenglong; Chen, Dima; Hall, Steven J.
  • Ecology Letters, Vol. 21, Issue 8
  • DOI: 10.1111/ele.13083

Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship
journal, April 2016

  • Estiarte, Marc; Vicca, Sara; Peñuelas, Josep
  • Global Change Biology, Vol. 22, Issue 7
  • DOI: 10.1111/gcb.13269

Variation Among Biomes in Temporal Dynamics of Aboveground Primary Production
journal, January 2001


Reduction of forest soil respiration in response to nitrogen deposition
journal, April 2010

  • Janssens, I. A.; Dieleman, W.; Luyssaert, S.
  • Nature Geoscience, Vol. 3, Issue 5
  • DOI: 10.1038/ngeo844

Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity
journal, February 2016


Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO 2 concentration: a meta‐analytic test of current theories and perceptions
journal, August 1999


The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink
journal, May 2015


Soil warming, carbon-nitrogen interactions, and forest carbon budgets
journal, May 2011

  • Melillo, J. M.; Butler, S.; Johnson, J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 23
  • DOI: 10.1073/pnas.1018189108

Interactive responses of old-field plant growth and composition to warming and precipitation
journal, February 2012


Seasonal not annual rainfall determines grassland biomass response to carbon dioxide
journal, May 2014

  • Hovenden, Mark J.; Newton, Paul C. D.; Wills, Karen E.
  • Nature, Vol. 511, Issue 7511
  • DOI: 10.1038/nature13281

The fate of carbon in grasslands under carbon dioxide enrichment
journal, August 1997

  • Hungate, Bruce A.; Holland, Elisabeth A.; Jackson, Robert B.
  • Nature, Vol. 388, Issue 6642
  • DOI: 10.1038/41550

Nitrogen Limitation of net Primary Productivity in Terrestrial Ecosystems is Globally Distributed
journal, February 2008

  • LeBauer, David S.; Treseder, Kathleen K.
  • Ecology, Vol. 89, Issue 2
  • DOI: 10.1890/06-2057.1

Toward an allocation scheme for global terrestrial carbon models
journal, October 1999


Elevated CO 2 does not stimulate carbon sink in a semi-arid grassland
journal, January 2019

  • Song, Jian; Wan, Shiqiang; Piao, Shilong
  • Ecology Letters, Vol. 22, Issue 3
  • DOI: 10.1111/ele.13202

Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change
journal, December 2016

  • Knapp, Alan K.; Ciais, Philippe; Smith, Melinda D.
  • New Phytologist, Vol. 214, Issue 1
  • DOI: 10.1111/nph.14381

Responses of ecosystem carbon cycle to experimental warming: a meta-analysis
journal, March 2013

  • Lu, Meng; Zhou, Xuhui; Yang, Qiang
  • Ecology, Vol. 94, Issue 3
  • DOI: 10.1890/12-0279.1

Nonlinear, interacting responses to climate limit grassland production under global change
journal, September 2016

  • Zhu, Kai; Chiariello, Nona R.; Tobeck, Todd
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 38
  • DOI: 10.1073/pnas.1606734113

On the meta-analysis of response ratios for studies with correlated and multi-group designs
journal, November 2011


Faster Decomposition Under Increased Atmospheric CO2 Limits Soil Carbon Storage
journal, April 2014