Enabling real-time multi-messenger astrophysics discoveries with deep learning
Abstract
Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and finally, the need to build a community of experts to realize the goals of multi-messenger astrophysics.
- Authors:
-
more »
- Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
- California Inst. of Technology, Pasadena, CA (United States)
- Tecnologico de Monterrey, Zapopan (Mexico). School of Engineering and Sciences,
- Las Cumbres Observatory, Goleta, CA (United States)
- Univ. of Deleware, Newark, DE (United States)
- Stockholm Univ., AlbaNova, Stockholm (Sweden). The Oskar Klein Centre for Cosmoparticle Physics
- Univ. of Chicago, Chicago, IL (United States)
- IBM T.J. Watson Research Center, New York, NY (United States)
- Observatories of the Carnegie Inst. for Science, Pasadena, CA (United States)
- West Virginia Univ., Morgantown, WV (United States)
- Center for Mathematical Modelling, Santiago (Chile)
- Google X, Mountain View, CA (United States)
- NVIDIA, Santa Clara, CA (United States)
- Argonne National Lab. (ANL), Argonne, IL (United States). Leadership Computing Facility
- Massachusetts Inst. of Technology, Cambridge, MA (United States)
- Columbia Univ. in the City of New York, New York, NY (United States)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Univ. de Guadalajara, Guadalajara (Mexico). Centro Univers. de Ciencias Exactas e Ingenieria
- Univ. of Maryland, College Park, MD (United States)
- Cardiff Univ., Cardiff (United Kingdom)
- NASA Goddard Space Flight Center, Greenbelt, MD (United States)
- Univ. of Washington, Seattle, WA (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- Publication Date:
- Research Org.:
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
- OSTI Identifier:
- 1569373
- Grant/Contract Number:
- AC05-00OR22725
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Nature Reviews Physics
- Additional Journal Information:
- Journal Volume: 1; Journal Issue: 10; Journal ID: ISSN 2522-5820
- Publisher:
- Springer Nature
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 79 ASTRONOMY AND ASTROPHYSICS
Citation Formats
Huerta, E. A., Allen, Gabrielle, Andreoni, Igor, Antelis, Javier M., Bachelet, Etienne, Berriman, G. Bruce, Bianco, Federica B., Biswas, Rahul, Carrasco Kind, Matias, Chard, Kyle, Cho, Minsik, Cowperthwaite, Philip S., Etienne, Zachariah B., Fishbach, Maya, Forster, Francisco, George, Daniel, Gibbs, Tom, Graham, Matthew, Gropp, William, Gruendl, Robert, Gupta, Anushri, Haas, Roland, Habib, Sarah, Jennings, Elise, Johnson, Margaret W. G., Katsavounidis, Erik, Katz, Daniel S., Khan, Asad, Kindratenko, Volodymyr, Kramer, William T. C., Liu, Xin, Mahabal, Ashish, Marka, Zsuzsa, McHenry, Kenton, Miller, J. M., Moreno, Claudia, Neubauer, M. S., Oberlin, Steve, Olivas Jr., Alexander R., Petravick, Donald, Rebei, Adam, Rosofsky, Shawn, Ruiz, Milton, Saxton, Aaron, Schutz, Bernard F., Schwing, Alex, Seidel, Ed, Shapiro, Stuart L., Shen, Hongyu, Shen, Yue, Singer, Leo P., Sipocz, Brigitta M., Sun, Lunan, Towns, John, Tsokaros, Antonios, Wei, Wei, Wells, Jack, Williams, Timothy J., Xiong, Jinjun, and Zhao, Zhizhen. Enabling real-time multi-messenger astrophysics discoveries with deep learning. United States: N. p., 2019.
Web. doi:10.1038/s42254-019-0097-4.
Huerta, E. A., Allen, Gabrielle, Andreoni, Igor, Antelis, Javier M., Bachelet, Etienne, Berriman, G. Bruce, Bianco, Federica B., Biswas, Rahul, Carrasco Kind, Matias, Chard, Kyle, Cho, Minsik, Cowperthwaite, Philip S., Etienne, Zachariah B., Fishbach, Maya, Forster, Francisco, George, Daniel, Gibbs, Tom, Graham, Matthew, Gropp, William, Gruendl, Robert, Gupta, Anushri, Haas, Roland, Habib, Sarah, Jennings, Elise, Johnson, Margaret W. G., Katsavounidis, Erik, Katz, Daniel S., Khan, Asad, Kindratenko, Volodymyr, Kramer, William T. C., Liu, Xin, Mahabal, Ashish, Marka, Zsuzsa, McHenry, Kenton, Miller, J. M., Moreno, Claudia, Neubauer, M. S., Oberlin, Steve, Olivas Jr., Alexander R., Petravick, Donald, Rebei, Adam, Rosofsky, Shawn, Ruiz, Milton, Saxton, Aaron, Schutz, Bernard F., Schwing, Alex, Seidel, Ed, Shapiro, Stuart L., Shen, Hongyu, Shen, Yue, Singer, Leo P., Sipocz, Brigitta M., Sun, Lunan, Towns, John, Tsokaros, Antonios, Wei, Wei, Wells, Jack, Williams, Timothy J., Xiong, Jinjun, & Zhao, Zhizhen. Enabling real-time multi-messenger astrophysics discoveries with deep learning. United States. https://doi.org/10.1038/s42254-019-0097-4
Huerta, E. A., Allen, Gabrielle, Andreoni, Igor, Antelis, Javier M., Bachelet, Etienne, Berriman, G. Bruce, Bianco, Federica B., Biswas, Rahul, Carrasco Kind, Matias, Chard, Kyle, Cho, Minsik, Cowperthwaite, Philip S., Etienne, Zachariah B., Fishbach, Maya, Forster, Francisco, George, Daniel, Gibbs, Tom, Graham, Matthew, Gropp, William, Gruendl, Robert, Gupta, Anushri, Haas, Roland, Habib, Sarah, Jennings, Elise, Johnson, Margaret W. G., Katsavounidis, Erik, Katz, Daniel S., Khan, Asad, Kindratenko, Volodymyr, Kramer, William T. C., Liu, Xin, Mahabal, Ashish, Marka, Zsuzsa, McHenry, Kenton, Miller, J. M., Moreno, Claudia, Neubauer, M. S., Oberlin, Steve, Olivas Jr., Alexander R., Petravick, Donald, Rebei, Adam, Rosofsky, Shawn, Ruiz, Milton, Saxton, Aaron, Schutz, Bernard F., Schwing, Alex, Seidel, Ed, Shapiro, Stuart L., Shen, Hongyu, Shen, Yue, Singer, Leo P., Sipocz, Brigitta M., Sun, Lunan, Towns, John, Tsokaros, Antonios, Wei, Wei, Wells, Jack, Williams, Timothy J., Xiong, Jinjun, and Zhao, Zhizhen. Thu .
"Enabling real-time multi-messenger astrophysics discoveries with deep learning". United States. https://doi.org/10.1038/s42254-019-0097-4. https://www.osti.gov/servlets/purl/1569373.
@article{osti_1569373,
title = {Enabling real-time multi-messenger astrophysics discoveries with deep learning},
author = {Huerta, E. A. and Allen, Gabrielle and Andreoni, Igor and Antelis, Javier M. and Bachelet, Etienne and Berriman, G. Bruce and Bianco, Federica B. and Biswas, Rahul and Carrasco Kind, Matias and Chard, Kyle and Cho, Minsik and Cowperthwaite, Philip S. and Etienne, Zachariah B. and Fishbach, Maya and Forster, Francisco and George, Daniel and Gibbs, Tom and Graham, Matthew and Gropp, William and Gruendl, Robert and Gupta, Anushri and Haas, Roland and Habib, Sarah and Jennings, Elise and Johnson, Margaret W. G. and Katsavounidis, Erik and Katz, Daniel S. and Khan, Asad and Kindratenko, Volodymyr and Kramer, William T. C. and Liu, Xin and Mahabal, Ashish and Marka, Zsuzsa and McHenry, Kenton and Miller, J. M. and Moreno, Claudia and Neubauer, M. S. and Oberlin, Steve and Olivas Jr., Alexander R. and Petravick, Donald and Rebei, Adam and Rosofsky, Shawn and Ruiz, Milton and Saxton, Aaron and Schutz, Bernard F. and Schwing, Alex and Seidel, Ed and Shapiro, Stuart L. and Shen, Hongyu and Shen, Yue and Singer, Leo P. and Sipocz, Brigitta M. and Sun, Lunan and Towns, John and Tsokaros, Antonios and Wei, Wei and Wells, Jack and Williams, Timothy J. and Xiong, Jinjun and Zhao, Zhizhen},
abstractNote = {Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and finally, the need to build a community of experts to realize the goals of multi-messenger astrophysics.},
doi = {10.1038/s42254-019-0097-4},
journal = {Nature Reviews Physics},
number = 10,
volume = 1,
place = {United States},
year = {2019},
month = {10}
}
Works referenced in this record:
Lasair: The Transient Alert Broker for LSST:UK
journal, January 2019
- Smith, K. W.; Williams, R. D.; Young, D. R.
- Research Notes of the AAS, Vol. 3, Issue 1
Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement
journal, June 1999
- Owen, Benjamin J.; Sathyaprakash, B. S.
- Physical Review D, Vol. 60, Issue 2
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models
journal, October 2017
- Cowperthwaite, P. S.; Berger, E.; Villar, V. A.
- The Astrophysical Journal, Vol. 848, Issue 2
First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814
journal, April 2019
- Soares-Santos, M.; Palmese, A.; Hartley, W.
- The Astrophysical Journal, Vol. 876, Issue 1
Deep Fluids: A Generative Network for Parameterized Fluid Simulations
journal, May 2019
- Kim, Byungsoo; Azevedo, Vinicius C.; Thuerey, Nils
- Computer Graphics Forum, Vol. 38, Issue 2
Community Organizations: Changing the Culture in Which Research Software Is Developed and Sustained
journal, March 2019
- Katz, Daniel S.; McInnes, Lois Curfman; Bernholdt, David E.
- Computing in Science & Engineering, Vol. 21, Issue 2
Deep learning
journal, May 2015
- LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
- Nature, Vol. 521, Issue 7553
The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics
journal, May 2012
- Löffler, Frank; Faber, Joshua; Bentivegna, Eloisa
- Classical and Quantum Gravity, Vol. 29, Issue 11
Deep-learning continuous gravitational waves
journal, August 2019
- Dreissigacker, Christoph; Sharma, Rahul; Messenger, Chris
- Physical Review D, Vol. 100, Issue 4
OPACITIES AND SPECTRA OF THE r -PROCESS EJECTA FROM NEUTRON STAR MERGERS
journal, August 2013
- Kasen, Daniel; Badnell, N. R.; Barnes, Jennifer
- The Astrophysical Journal, Vol. 774, Issue 1
Supernova 1987A
journal, September 1989
- Arnett, W. David; Bahcall, John N.; Kirshner, Robert P.
- Annual Review of Astronomy and Astrophysics, Vol. 27, Issue 1
Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts
journal, October 2018
- Hotokezaka, Kenta; Beniamini, Paz; Piran, Tsvi
- International Journal of Modern Physics D, Vol. 27, Issue 13
Graph Neural Networks for IceCube Signal Classification
conference, December 2018
- Choma, Nicholas; Bruna, Joan; Monti, Federico
- 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)
What is the most Promising Electromagnetic Counterpart of a Neutron star Binary Merger?
journal, January 2012
- Metzger, B. D.; Berger, E.
- The Astrophysical Journal, Vol. 746, Issue 1
Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis
journal, October 2017
- Drout, M. R.; Piro, A. L.; Shappee, B. J.
- Science, Vol. 358, Issue 6370
Design and evaluation of a parallel k-nearest neighbor algorithm on CUDA-enabled GPU
conference, August 2010
- Liang, Shenshen; Liu, Ying; Wang, Cheng
- 2010 IEEE 2nd Symposium on Web Society (SWS)
Results from the Supernova Photometric Classification Challenge
journal, December 2010
- Kessler, Richard; Bassett, Bruce; Belov, Pavel
- Publications of the Astronomical Society of the Pacific, Vol. 122, Issue 898
Binary neutron star mergers: a review of Einstein’s richest laboratory
journal, July 2017
- Baiotti, Luca; Rezzolla, Luciano
- Reports on Progress in Physics, Vol. 80, Issue 9
Deep Learning-Based Numerical Methods for High-Dimensional Parabolic Partial Differential Equations and Backward Stochastic Differential Equations
journal, November 2017
- E., Weinan; Han, Jiequn; Jentzen, Arnulf
- Communications in Mathematics and Statistics, Vol. 5, Issue 4
Supporting High-Performance and High-Throughput Computing for Experimental Science
journal, February 2019
- Huerta, E. A.; Haas, Roland; Jha, Shantenu
- Computing and Software for Big Science, Vol. 3, Issue 1
Effective image differencing with convolutional neural networks for real-time transient hunting
journal, April 2018
- Sedaghat, Nima; Mahabal, Ashish
- Monthly Notices of the Royal Astronomical Society, Vol. 476, Issue 4
Improving galaxy morphologies for SDSS with Deep Learning
journal, February 2018
- Domínguez Sánchez, H.; Huertas-Company, M.; Bernardi, M.
- Monthly Notices of the Royal Astronomical Society, Vol. 476, Issue 3
Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars
journal, February 2019
- Burrows, Adam; Radice, David; Vartanyan, David
- Monthly Notices of the Royal Astronomical Society, Vol. 485, Issue 3
Relativistic Simulations of Black Hole–Neutron star Coalescence: the jet Emerges
journal, June 2015
- Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.
- The Astrophysical Journal, Vol. 806, Issue 1
Numerical relativity of compact binaries in the 21st century
journal, November 2018
- Duez, Matthew D.; Zlochower, Yosef
- Reports on Progress in Physics, Vol. 82, Issue 1
Serendipitous discoveries of kilonovae in the LSST main survey: maximizing detections of sub-threshold gravitational wave events
journal, February 2019
- Setzer, Christian N.; Biswas, Rahul; Peiris, Hiranya V.
- Monthly Notices of the Royal Astronomical Society, Vol. 485, Issue 3
Deep learning at scale for the construction of galaxy catalogs in the Dark Energy Survey
journal, August 2019
- Khan, Asad; Huerta, E. A.; Wang, Sibo
- Physics Letters B, Vol. 795
Classification and unsupervised clustering of LIGO data with Deep Transfer Learning
journal, May 2018
- George, Daniel; Shen, Hongyu; Huerta, E. A.
- Physical Review D, Vol. 97, Issue 10
Early Dark Energy can Resolve the Hubble Tension
journal, June 2019
- Poulin, Vivian; Smith, Tristan L.; Karwal, Tanvi
- Physical Review Letters, Vol. 122, Issue 22
Complete waveform model for compact binaries on eccentric orbits
journal, January 2017
- Huerta, E. A.; Kumar, Prayush; Agarwal, Bhanu
- Physical Review D, Vol. 95, Issue 2
Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence
journal, May 2019
- Xie, Chenyue; Wang, Jianchun; Li, Ke
- Physical Review E, Vol. 99, Issue 5
Searching for gravitational waves from compact binaries with precessing spins
journal, July 2016
- Harry, Ian; Privitera, Stephen; Bohé, Alejandro
- Physical Review D, Vol. 94, Issue 2
Observing gravitational waves from core-collapse supernovae in the advanced detector era
journal, February 2016
- Gossan, S. E.; Sutton, P.; Stuver, A.
- Physical Review D, Vol. 93, Issue 4
Randomized approximate nearest neighbors algorithm
journal, September 2011
- Jones, P. W.; Osipov, A.; Rokhlin, V.
- Proceedings of the National Academy of Sciences, Vol. 108, Issue 38
Characterizing the Gravitational Wave Signal from Core-collapse Supernovae
journal, April 2019
- Radice, David; Morozova, Viktoriya; Burrows, Adam
- The Astrophysical Journal, Vol. 876, Issue 1
How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
journal, December 2017
- Scolnic, D.; Kessler, R.; Brout, D.
- The Astrophysical Journal, Vol. 852, Issue 1
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
journal, October 2017
- Abbott, B. P.; Abbott, R.; Abbott, T. D.
- Physical Review Letters, Vol. 119, Issue 16
A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817
journal, December 2017
- Mooley, K. P.; Nakar, E.; Hotokezaka, K.
- Nature, Vol. 554, Issue 7691
On the Nature of Core-Collapse Supernova Explosions
journal, September 1995
- Burrows, Adam; Hayes, John; Fryxell, Bruce A.
- The Astrophysical Journal, Vol. 450
Local adaptive mesh refinement for shock hydrodynamics
journal, May 1989
- Berger, M. J.; Colella, P.
- Journal of Computational Physics, Vol. 82, Issue 1
Mary , a Pipeline to Aid Discovery of Optical Transients
journal, January 2017
- Andreoni, I.; Jacobs, C.; Hegarty, S.
- Publications of the Astronomical Society of Australia, Vol. 34
Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers
journal, August 2019
- Rebei, Adam; Huerta, E. A.; Wang, Sibo
- Physical Review D, Vol. 100, Issue 4
Subgrid modelling for two-dimensional turbulence using neural networks
journal, November 2018
- Maulik, R.; San, O.; Rasheed, A.
- Journal of Fluid Mechanics, Vol. 858
A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart
journal, January 2019
- Fishbach, M.; Gray, R.; Hernandez, I. Magaña
- The Astrophysical Journal, Vol. 871, Issue 1
Optimizing searches for electromagnetic counterparts of gravitational wave triggers
journal, April 2018
- Coughlin, Michael W.; Tao, Duo; Chan, Man Leong
- Monthly Notices of the Royal Astronomical Society, Vol. 478, Issue 1
Data Access for LIGO on the OSG
conference, January 2017
- Weitzel, Derek; Bockelman, Brian; Brown, Duncan A.
- Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact - PEARC17
Deep neural networks to enable real-time multimessenger astrophysics
journal, February 2018
- George, Daniel; Huerta, E. A.
- Physical Review D, Vol. 97, Issue 4
The physics of core-collapse supernovae
journal, December 2005
- Woosley, Stan; Janka, Thomas
- Nature Physics, Vol. 1, Issue 3
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
journal, October 2016
- Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy
- Journal of Fluid Mechanics, Vol. 807
Neutrino-Driven Convection in Core-Collapse Supernovae: High-Resolution Simulations
journal, March 2016
- Radice, David; Ott, Christian D.; Abdikamalov, Ernazar
- The Astrophysical Journal, Vol. 820, Issue 1
r -process Nucleosynthesis from Three-dimensional Magnetorotational Core-collapse Supernovae
journal, September 2018
- Mösta, Philipp; Roberts, Luke F.; Halevi, Goni
- The Astrophysical Journal, Vol. 864, Issue 2
Producing Magnetar Magnetic Fields in the Merger of Binary Neutron Stars
journal, August 2015
- Giacomazzo, Bruno; Zrake, Jonathan; Duffell, Paul C.
- The Astrophysical Journal, Vol. 809, Issue 1
A convolutional neural network neutrino event classifier
journal, September 2016
- Aurisano, A.; Radovic, A.; Rocco, D.
- Journal of Instrumentation, Vol. 11, Issue 09
SkyNet: A Modular Nuclear Reaction Network Library
journal, December 2017
- Lippuner, Jonas; Roberts, Luke F.
- The Astrophysical Journal Supplement Series, Vol. 233, Issue 2
Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts, and Nucleosynthesis
journal, December 2018
- Radice, David; Perego, Albino; Hotokezaka, Kenta
- The Astrophysical Journal, Vol. 869, Issue 2
Binary Neutron star Mergers: a jet Engine for Short Gamma-Ray Bursts
journal, June 2016
- Ruiz, Milton; Lang, Ryan N.; Paschalidis, Vasileios
- The Astrophysical Journal, Vol. 824, Issue 1
THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics
journal, October 2012
- Radice, D.; Rezzolla, L.
- Astronomy & Astrophysics, Vol. 547
Observing gravitational-wave transient GW150914 with minimal assumptions
journal, June 2016
- Abbott, B. P.; Abbott, R.; Abbott, T. D.
- Physical Review D, Vol. 93, Issue 12
Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters
journal, April 2018
- Jones, D. O.; Scolnic, D. M.; Riess, A. G.
- The Astrophysical Journal, Vol. 857, Issue 1
Hungary rewards highly cited scientists with bonus grants
journal, November 2017
- Abbott, Alison
- Nature, Vol. 551, Issue 7681
Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817
journal, December 2017
- Abbott, B. P.; Abbott, R.; Abbott, T. D.
- The Astrophysical Journal, Vol. 850, Issue 2
Determining the Hubble constant from gravitational wave observations
journal, September 1986
- Schutz, Bernard F.
- Nature, Vol. 323, Issue 6086
Comparison of various methods to extract ringdown frequency from gravitational wave data
journal, June 2019
- Nakano, Hiroyuki; Narikawa, Tatsuya; Oohara, Ken-ichi
- Physical Review D, Vol. 99, Issue 12
Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope
journal, June 2019
- Robertson, Brant E.; Banerji, Manda; Brough, Sarah
- Nature Reviews Physics, Vol. 1, Issue 7
Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM
journal, May 2019
- Riess, Adam G.; Casertano, Stefano; Yuan, Wenlong
- The Astrophysical Journal, Vol. 876, Issue 1
Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers
journal, May 2018
- Siegel, Daniel M.; Metzger, Brian D.
- The Astrophysical Journal, Vol. 858, Issue 1
Denoising Gravitational Waves with Enhanced Deep Recurrent Denoising Auto-encoders
conference, May 2019
- Shen, Hongyu; George, Daniel; Huerta, Eliu. A.
- ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy
journal, April 2018
- Gabbard, Hunter; Williams, Michael; Hayes, Fergus
- Physical Review Letters, Vol. 120, Issue 14
Physics of Core-Collapse Supernovae in Three Dimensions: A Sneak Preview
journal, October 2016
- Janka, Hans-Thomas; Melson, Tobias; Summa, Alexander
- Annual Review of Nuclear and Particle Science, Vol. 66, Issue 1
Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory
journal, October 2017
- Arcavi, Iair; McCully, Curtis; Hosseinzadeh, Griffin
- The Astrophysical Journal, Vol. 848, Issue 2
Gravitational wave denoising of binary black hole mergers with deep learning
journal, January 2020
- Wei, Wei; Huerta, E. A.
- Physics Letters B, Vol. 800
A unified deep artificial neural network approach to partial differential equations in complex geometries
journal, November 2018
- Berg, Jens; Nyström, Kaj
- Neurocomputing, Vol. 317
Evolution of the magnetized, neutrino-cooled accretion disk in the aftermath of a black hole-neutron star binary merger
journal, April 2018
- Hossein Nouri, Fatemeh; Duez, Matthew D.; Foucart, Francois
- Physical Review D, Vol. 97, Issue 8
Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream
journal, May 2018
- Narayan, Gautham; Zaidi, Tayeb; Soraisam, Monika D.
- The Astrophysical Journal Supplement Series, Vol. 236, Issue 1
BOSS-LDG: A Novel Computational Framework That Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery
conference, October 2017
- Huerta, E. A.; Haas, Roland; Fajardo, Edgar
- 2017 IEEE 13th International Conference on e-Science (e-Science)
Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data
journal, March 2018
- George, Daniel; Huerta, E. A.
- Physics Letters B, Vol. 778
GW170817: Observation of gravitational waves from a binary neutron star inspiral
text, January 2017
- Abbott, B. P.; Abbott, R.; Abbott, T. D.
- American Physical Society
Deep-learning continuous gravitational waves
other, January 2019
- Dreissigacker, Christoph; Sharma, Rahul; Messenger, Chris
- College Park, MD : American Physical Society
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
other, January 2017
- Abbott, B. P.; Abbott, R.; Abbott, T. D.
- College Park : American Physical Society
Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817
text, January 2017
- Abbott, B. P.; Al, Et
- IOP Publishing
LSST Science Book, Version 2.0
preprint, January 2009
- Collaboration, LSST Science; Abell, Paul A.; Allison, Julius
- arXiv
Results from the Supernova Photometric Classification Challenge
text, January 2010
- Kessler, Richard; Bassett, Bruce; Belov, Pavel
- arXiv
What is the Most Promising Electromagnetic Counterpart of a Neutron Star Binary Merger?
text, January 2011
- Metzger, Brian D.; Berger, Edo
- arXiv
The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics
text, January 2011
- Löffler, Frank; Faber, Joshua; Bentivegna, Eloisa
- arXiv
The Dark Energy Survey: more than dark energy - an overview
text, January 2016
- Collaboration, Dark Energy Survey; Abbott, T.; Abdalla, F. B.
- arXiv
Searching for Gravitational Waves from Compact Binaries with Precessing Spins
text, January 2016
- Harry, Ian; Privitera, Stephen; Bohé, Alejandro
- arXiv
Binary neutron-star mergers: a review of Einstein's richest laboratory
text, January 2016
- Baiotti, Luca; Rezzolla, Luciano
- arXiv
Mary, a pipeline to aid discovery of optical transients
text, January 2017
- Andreoni, Igor; Jacobs, Colin; Hegarty, Sarah
- arXiv
BOSS-LDG: A Novel Computational Framework that Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery
text, January 2017
- Huerta, E. A.; Haas, Roland; Fajardo, Edgar
- arXiv
Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis
text, January 2017
- Drout, M. R.; Piro, A. L.; Shappee, B. J.
- arXiv
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
text, January 2017
- Collaboration, The LIGO Scientific; Collaboration, The Virgo
- arXiv
Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817
text, January 2017
- Collaboration, The LIGO Scientific; Collaboration, The Virgo; Abbott, B. P.
- arXiv
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. II. UV, Optical, and Near-IR Light Curves and Comparison to Kilonova Models
text, January 2017
- Cowperthwaite, P. S.; Berger, E.; Villar, V. A.
- arXiv
Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory
text, January 2017
- Arcavi, Iair; McCully, Curtis; Hosseinzadeh, Griffin
- arXiv
Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger
text, January 2017
- Nouri, Fatemeh Hossein; Duez, Matthew D.; Foucart, Francois
- arXiv
A mildly relativistic wide-angle outflow in the neutron star merger GW170817
text, January 2017
- Mooley, K. P.; Nakar, E.; Hotokezaka, K.
- arXiv
Neutron Star Mergers as sites of r-process Nucleosynthesis and Short Gamma-Ray Bursts
text, January 2018
- Hotokezaka, Kenta; Beniamini, Paz; Piran, Tsvi
- arXiv
Machine Learning-based Brokers for Real-time Classification of the LSST Alert Stream
text, January 2018
- Narayan, Gautham; Zaidi, Tayeb; Soraisam, Monika D.
- arXiv
Optimizing searches for electromagnetic counterparts of gravitational wave triggers
text, January 2018
- Coughlin, Michael W.; Tao, Duo; Chan, Man Leong
- arXiv
Deep Fluids: A Generative Network for Parameterized Fluid Simulations
text, January 2018
- Kim, Byungsoo; Azevedo, Vinicius C.; Thuerey, Nils
- arXiv
A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart
text, January 2018
- Fishbach, M.; Gray, R.; Hernandez, I. Magaña
- arXiv
Numerical Relativity of Compact Binaries in the 21st Century
text, January 2018
- Duez, Matthew D.; Zlochower, Yosef
- arXiv
Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts and Nucleosynthesis
text, January 2018
- Radice, David; Perego, Albino; Hotokezaka, Kenta
- arXiv
Deep Learning at Scale for the Construction of Galaxy Catalogs in the Dark Energy Survey
text, January 2018
- Khan, Asad; Huerta, E. A.; Wang, Sibo
- arXiv
Characterizing the Gravitational Wave Signal from Core-Collapse Supernovae
text, January 2018
- Radice, David; Morozova, Viktoriya; Burrows, Adam
- arXiv
Serendipitous Discoveries of Kilonovae in the LSST Main Survey: Maximising Detections of Sub-Threshold Gravitational Wave Events
text, January 2018
- Setzer, Christian N.; Biswas, Rahul; Peiris, Hiranya V.
- arXiv
Three-Dimensional Supernova Explosion Simulations of 9-, 10-, 11-, 12-, and 13-M$_{\odot}$ Stars
text, January 2019
- Burrows, Adam; Radice, David; Vartanyan, David
- arXiv
Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM
text, January 2019
- Riess, Adam G.; Casertano, Stefano; Yuan, Wenlong
- arXiv
Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement
text, January 1998
- Owen, Benjamin J.; Sathyaprakash, B. S.
- arXiv
Works referencing / citing this record:
Luminal propagation of gravitational waves in scalar-tensor theories: The case for torsion
journal, December 2019
- Barrientos, José; Cordonier-Tello, Fabrizio; Corral, Cristóbal
- Physical Review D, Vol. 100, Issue 12