Controlling the spatio-temporal dose distribution during STEM imaging by subsampled acquisition: In-situ observations of kinetic processes in liquids
- Univ. of Liverpool (United Kingdom); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
- Sivananthan Lab., Bolingbrook, IL (United States)
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
- Arizona State Univ., Tempe, AZ (United States)
- Univ. of Liverpool (United Kingdom); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivananthan Lab., Bolingbrook, IL (United States)
Subsampled image acquisition followed by image inpainting in the scanning transmission electron microscope (STEM) is a novel approach to control dose and increase the image frame rate during experiments, thereby allowing independent control of the spatial and temporal dose envelope during image acquisition. Here, subsampled imaging is shown to permit precise in-situ observations of the fundamental kinetic processes behind nucleation and growth of silver (Ag) nanoparticles from an aqueous solution. At high sampling-levels, nanoparticles can be observed with morphologies that are consistent with strong interface interactions, i.e. rafts and pillars, whereas at low sampling-levels, the particles exhibit regular spherical morphologies. The relative numbers of rafts/pillars and regular nanoparticles, their sizes and their incubation times can be attributed to local changes in the molar concentration of the Ag ions in the aqueous solution; higher sampling-levels significantly increase the reactants in the vicinity of the window, leading to rapid supersaturation and the precipitation on the window surface. These precisely controlled kinetics highlight subsampled imaging as a method by which the driving force for nucleation and growth (i.e the electron beam) can be disentangled from the spatial/temporal resolution of the observation in all in-situ experiments, providing a pathway to identify and quantify the importance of individual kinetic factors behind nucleation and growth in a wide variety of complex materialssystems and architectures.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC05-76RL01830
- OSTI ID:
- 1568817
- Alternate ID(s):
- OSTI ID: 1546867
- Report Number(s):
- PNNL-SA-145156; TRN: US2001106
- Journal Information:
- Applied Physics Letters, Vol. 115, Issue 6; ISSN 0003-6951
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Compressive Classification for TEM-EELS
Incremental growth of short SWNT arrays by pulsed chemical vapor deposition