skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on May 8, 2020

Title: Nanosecond X-ray diffraction of shock-compressed superionic water ice

Abstract

Since Bridgman’s discovery of five solid water (H 2O) ice phases in 1912, studies on the extraordinary polymorphism of H 2O have documented more than seventeen crystalline and several amorphous ice structures, as well as rich metastability and kinetic effects. Here, this unique behaviour is due in part to the geometrical frustration of the weak intermolecular hydrogen bonds and the sizeable quantum motion of the light hydrogen ions (protons). Particularly intriguing is the prediction that H 2O becomes superionic—with liquid-like protons diffusing through the solid lattice of oxygen—when subjected to extreme pressures exceeding 100 gigapascals and high temperatures above 2,000 kelvin.

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Rochester, Rochester, NY (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1568026
Report Number(s):
LLNL-JRNL-740026
Journal ID: ISSN 0028-0836; 892369
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 569; Journal Issue: 7755; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Millot, Marius, Coppari, Federica, Rygg, J. Ryan, Barrios, Antonio Correa, Hamel, Sebastien, Swift, Damian C., and Eggert, Jon H. Nanosecond X-ray diffraction of shock-compressed superionic water ice. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1114-6.
Millot, Marius, Coppari, Federica, Rygg, J. Ryan, Barrios, Antonio Correa, Hamel, Sebastien, Swift, Damian C., & Eggert, Jon H. Nanosecond X-ray diffraction of shock-compressed superionic water ice. United States. doi:10.1038/s41586-019-1114-6.
Millot, Marius, Coppari, Federica, Rygg, J. Ryan, Barrios, Antonio Correa, Hamel, Sebastien, Swift, Damian C., and Eggert, Jon H. Wed . "Nanosecond X-ray diffraction of shock-compressed superionic water ice". United States. doi:10.1038/s41586-019-1114-6.
@article{osti_1568026,
title = {Nanosecond X-ray diffraction of shock-compressed superionic water ice},
author = {Millot, Marius and Coppari, Federica and Rygg, J. Ryan and Barrios, Antonio Correa and Hamel, Sebastien and Swift, Damian C. and Eggert, Jon H.},
abstractNote = {Since Bridgman’s discovery of five solid water (H2O) ice phases in 1912, studies on the extraordinary polymorphism of H2O have documented more than seventeen crystalline and several amorphous ice structures, as well as rich metastability and kinetic effects. Here, this unique behaviour is due in part to the geometrical frustration of the weak intermolecular hydrogen bonds and the sizeable quantum motion of the light hydrogen ions (protons). Particularly intriguing is the prediction that H2O becomes superionic—with liquid-like protons diffusing through the solid lattice of oxygen—when subjected to extreme pressures exceeding 100 gigapascals and high temperatures above 2,000 kelvin.},
doi = {10.1038/s41586-019-1114-6},
journal = {Nature (London)},
number = 7755,
volume = 569,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 8, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Melting of ice under pressure
journal, September 2008

  • Schwegler, E.; Sharma, M.; Gygi, F.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 39
  • DOI: 10.1073/pnas.0808137105

Ice structures, patterns, and processes: A view across the icefields
journal, May 2012

  • Bartels-Rausch, Thorsten; Bergeron, Vance; Cartwright, Julyan H. E.
  • Reviews of Modern Physics, Vol. 84, Issue 2
  • DOI: 10.1103/RevModPhys.84.885

Anomalies in bulk supercooled water at negative pressure
journal, May 2014

  • Pallares, G.; El Mekki Azouzi, M.; Gonzalez, M. A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 22
  • DOI: 10.1073/pnas.1323366111

A metastable limit for compressed liquid water
journal, March 2007

  • Dolan, D. H.; Knudson, M. D.; Hall, C. A.
  • Nature Physics, Vol. 3, Issue 5
  • DOI: 10.1038/nphys562

Compression Freezing Kinetics of Water to Ice VII
journal, July 2017


Powder diffraction from solids in the terapascal regime
journal, November 2012

  • Rygg, J. R.; Eggert, J. H.; Lazicki, A. E.
  • Review of Scientific Instruments, Vol. 83, Issue 11
  • DOI: 10.1063/1.4766464

Superionic and Metallic States of Water and Ammonia at Giant Planet Conditions
journal, January 1999


Dynamical Instabilities of Ice X
journal, August 2008


Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal
journal, April 2017


Construction of a thermodynamic potential for the water ices VII and X
journal, January 2015


Liquid water and ices: understanding the structure and physical properties
journal, June 2009


Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2
journal, September 2015

  • Gleason, A. E.; Bolme, C. A.; Lee, H. J.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9191

Experimental evidence for superionic water ice using shock compression
journal, February 2018


The phase diagram of water and the magnetic fields of Uranus and Neptune
journal, January 2011


High pressure ices
journal, December 2011

  • Hermann, A.; Ashcroft, N. W.; Hoffmann, R.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 3
  • DOI: 10.1073/pnas.1118694109

The phase diagram of high-pressure superionic ice
journal, August 2015

  • Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9156

The relationship between liquid, supercooled and glassy water
journal, November 1998

  • Mishima, Osamu; Stanley, H. Eugene
  • Nature, Vol. 396, Issue 6709
  • DOI: 10.1038/24540

Nanosecond freezing of water under multiple shock wave compression: Optical transmission and imaging measurements
journal, November 2004

  • Dolan, D. H.; Gupta, Y. M.
  • The Journal of Chemical Physics, Vol. 121, Issue 18
  • DOI: 10.1063/1.1805499

Constraining the equation of state of fluid H2O to 80 GPa using the melting curve, bulk modulus, and thermal expansivity of Ice VII
journal, July 2004

  • Frank, Mark R.; Fei, Yingwei; Hu, Jingzhu
  • Geochimica et Cosmochimica Acta, Vol. 68, Issue 13
  • DOI: 10.1016/j.gca.2003.12.007

Simultaneous high-pressure and high-temperature volume measurements of ice VII and its thermal equation of state
journal, October 2010


New Phases of Water Ice Predicted at Megabar Pressures
journal, November 2010


New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice
journal, November 2016

  • del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13394

New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data
journal, March 2013


Water, in the Liquid and Five Solid Forms, under Pressure
journal, January 1912

  • Bridgman, P. W.
  • Proceedings of the American Academy of Arts and Sciences, Vol. 47, Issue 13
  • DOI: 10.2307/20022754

New High-Pressure Phases of Ice
journal, May 1988


Modulated phases and proton centring in ice observed by X-ray diffraction up to 170?GPa
journal, February 1999

  • Loubeyre, Paul; LeToullec, René; Wolanin, Elodie
  • Nature, Vol. 397, Issue 6719
  • DOI: 10.1038/17300

Superionic-Superionic Phase Transitions in Body-Centered Cubic H 2 O Ice
journal, September 2016


Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors
journal, February 2009


Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures
journal, September 2013

  • Coppari, F.; Smith, R. F.; Eggert, J. H.
  • Nature Geoscience, Vol. 6, Issue 11
  • DOI: 10.1038/ngeo1948

Static compression of H2O-ice to 128 GPa (1.28 Mbar)
journal, December 1987

  • Hemley, R. J.; Jephcoat, A. P.; Mao, H. K.
  • Nature, Vol. 330, Issue 6150
  • DOI: 10.1038/330737a0

Phase Diagram and Electrical Conductivity of High Energy-Density Water from Density Functional Theory
journal, July 2006


Ab initio calculation of thermodynamic potentials and entropies for superionic water
journal, February 2016


New High-Pressure Phase of Ice
journal, April 1996


Electrical conductivity of water compressed dynamically to pressures of 70–180 GPa (0.7–1.8 Mbar)
journal, January 2001

  • Chau, R.; Mitchell, A. C.; Minich, R. W.
  • The Journal of Chemical Physics, Vol. 114, Issue 3
  • DOI: 10.1063/1.1332079

Experimental evidence of superionic conduction in H 2 O ice
journal, November 2012

  • Sugimura, Emiko; Komabayashi, Tetsuya; Ohta, Kenji
  • The Journal of Chemical Physics, Vol. 137, Issue 19
  • DOI: 10.1063/1.4766816