DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows

Abstract

In many natural phenomena in space (cosmic-rays, fast winds), non-thermal ion populations are produced, with wave-particle interactions in self-induced electromagnetic turbulence being suspected to be mediators. However, the processes by which the electromagnetic energy is bestowed upon the particles is debated, and in some cases requires field compression. Here we show that laboratory experiments using high-power lasers and external strong magnetic field can be used to infer magnetic field compression in the interpenetration of two collisionless, high-velocity (0.01–0.1c) quasi-neutral plasma flows. This is evidenced through observed plasma stagnation at the flows collision point, which Particle-in-Cell (PIC) simulations suggest to be the signature of magnetic field compression into a thin layer, followed by its dislocation into magnetic vortices. Acceleration of protons from the plasma collision is observed as well. As a possible scenario, with 1D and 2D PIC simulations we consider a compression of the vortices against dense plasma remnants.

Authors:
 [1]; ORCiD logo [2];  [3];  [3];  [4];  [5];  [6];  [7];  [7];  [8];  [9];  [7]; ORCiD logo [10];  [11];  [7];  [11];  [12]; ORCiD logo [13]; ORCiD logo [7];  [14] more »; ORCiD logo [15] « less
  1. Sorbonne Univ., Palaiseau Cedex (France); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. National Research Nuclear Univ. MEPhI, Moscow (Russian Federation); P.N. Lebedev Physical Institute (LPI), Moscow (Russian Federation)
  3. Sorbonne Univ., Palaiseau Cedex (France); CEA, DAM, DIF, Arpajon (France)
  4. Inst. of Physics Academy of Sciences of the Czech Republic, Brezany (Czech Republic)
  5. LNCMI, Toulouse (France)
  6. Sorbonne Univ., Palaiseau Cedex (France); “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele (Romania)
  7. Sorbonne Univ., Palaiseau Cedex (France)
  8. CEA, DAM, DIF, Arpajon (France)
  9. INRS-EMT, Varennes, QC (Canada)
  10. National Research Nuclear Univ. MEPhI, Moscow (Russian Federation); Joint Inst. for High Temperatures, Moscow (Russian Federation)
  11. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  12. Inst. of Applied Physics, Novgorod (Russian Federation)
  13. Inst. of Physics Academy of Sciences of the Czech Republic, Dolni Brezany (Czech Republic); Univ. of Bordeaux, Talence (France)
  14. Univ. of Bordeaux, Talence (France)
  15. Sorbonne Univ., Palaiseau Cedex (France); Inst. of Applied Physics, Novgorod (Russian Federation)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1568022
Report Number(s):
LLNL-JRNL-744001
Journal ID: ISSN 2399-3650; 898765; TRN: US2001133
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Communications Physics
Additional Journal Information:
Journal Volume: 2; Journal Issue: 1; Journal ID: ISSN 2399-3650
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Higginson, D. P., Korneev, Ph., Ruyer, C., Riquier, R., Moreno, Q., Béard, J., Chen, S. N., Grassi, A., Grech, M., Gremillet, L., Pépin, H., Perez, F., Pikuz, S., Pollock, B., Riconda, C., Shepherd, R., Starodubtsev, M., Tikhonchuk, V., Vinci, T., d’Humières, E., and Fuchs, J. Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows. United States: N. p., 2019. Web. doi:10.1038/s42005-019-0160-6.
Higginson, D. P., Korneev, Ph., Ruyer, C., Riquier, R., Moreno, Q., Béard, J., Chen, S. N., Grassi, A., Grech, M., Gremillet, L., Pépin, H., Perez, F., Pikuz, S., Pollock, B., Riconda, C., Shepherd, R., Starodubtsev, M., Tikhonchuk, V., Vinci, T., d’Humières, E., & Fuchs, J. Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows. United States. https://doi.org/10.1038/s42005-019-0160-6
Higginson, D. P., Korneev, Ph., Ruyer, C., Riquier, R., Moreno, Q., Béard, J., Chen, S. N., Grassi, A., Grech, M., Gremillet, L., Pépin, H., Perez, F., Pikuz, S., Pollock, B., Riconda, C., Shepherd, R., Starodubtsev, M., Tikhonchuk, V., Vinci, T., d’Humières, E., and Fuchs, J. Thu . "Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows". United States. https://doi.org/10.1038/s42005-019-0160-6. https://www.osti.gov/servlets/purl/1568022.
@article{osti_1568022,
title = {Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows},
author = {Higginson, D. P. and Korneev, Ph. and Ruyer, C. and Riquier, R. and Moreno, Q. and Béard, J. and Chen, S. N. and Grassi, A. and Grech, M. and Gremillet, L. and Pépin, H. and Perez, F. and Pikuz, S. and Pollock, B. and Riconda, C. and Shepherd, R. and Starodubtsev, M. and Tikhonchuk, V. and Vinci, T. and d’Humières, E. and Fuchs, J.},
abstractNote = {In many natural phenomena in space (cosmic-rays, fast winds), non-thermal ion populations are produced, with wave-particle interactions in self-induced electromagnetic turbulence being suspected to be mediators. However, the processes by which the electromagnetic energy is bestowed upon the particles is debated, and in some cases requires field compression. Here we show that laboratory experiments using high-power lasers and external strong magnetic field can be used to infer magnetic field compression in the interpenetration of two collisionless, high-velocity (0.01–0.1c) quasi-neutral plasma flows. This is evidenced through observed plasma stagnation at the flows collision point, which Particle-in-Cell (PIC) simulations suggest to be the signature of magnetic field compression into a thin layer, followed by its dislocation into magnetic vortices. Acceleration of protons from the plasma collision is observed as well. As a possible scenario, with 1D and 2D PIC simulations we consider a compression of the vortices against dense plasma remnants.},
doi = {10.1038/s42005-019-0160-6},
journal = {Communications Physics},
number = 1,
volume = 2,
place = {United States},
year = {Thu Jun 20 00:00:00 EDT 2019},
month = {Thu Jun 20 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Experimental evidence for late-time plasma stagnation when colliding two fast plasmas in an ambient magnetic field as a signature of magnetic field compression. (a) Schematic of the experimental set-up. Two lasers irradiate two solid targets, accelerating two quasi-neutral, fast flows (electrons and ions, which are mostly protons) frommore » the rear surface, which expand into each other in the imposed 20 7 magnetic field. The axis of the Thomson parabola (TP) is shown and the interferometry diagnostic axis is into the page. (b-e) Electron density in the plasma, integrated along the line of sight (and hence in units of cm-2), as measured by the interferometer, at different times from the laser interaction. The frame b), corresponding to 5 89, uses a colorscale that represents 3 times more density than that of the other frames in order to better highlight the plasma profile at this time.« less

Save / Share:

Works referenced in this record:

Simultaneous Acceleration of Protons and Electrons at Nonrelativistic Quasiparallel Collisionless Shocks
journal, February 2015


XL. Cathode Rays
journal, October 1897

  • Thomson, J. J.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 44, Issue 269
  • DOI: 10.1080/14786449708621070

Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation
journal, December 2015

  • Albertazzi, B.; Chen, S. N.; Antici, P.
  • Physics of Plasmas, Vol. 22, Issue 12
  • DOI: 10.1063/1.4936095

Dynamics of Self-Generated, Large Amplitude Magnetic Fields Following High-Intensity Laser Matter Interaction
journal, November 2012


Twisted Magnetic flux Tubes in the Solar wind
journal, February 2014

  • Zaqarashvili, Teimuraz V.; Vörös, Zoltán; Narita, Yasuhito
  • The Astrophysical Journal, Vol. 783, Issue 1
  • DOI: 10.1088/2041-8205/783/1/L19

On the Magnetic Fields and Particle Acceleration in Cassiopeia A
journal, February 2003

  • Vink, Jacco; Laming, J. Martin
  • The Astrophysical Journal, Vol. 584, Issue 2
  • DOI: 10.1086/345832

On particle acceleration and trapping by Poynting flux dominated flows
journal, October 2005


Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils
journal, September 2004


3d mhd Modeling of Twisted Coronal Loops
journal, October 2016


Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

Interaction of high Mach-number shocks in laser-produced plasmas
journal, March 2013


Hot and Cold Electron Dynamics Following High-Intensity Laser Matter Interaction
journal, September 2008


Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility
journal, May 2017


Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly
journal, February 2014

  • Chen, S. N.; Robinson, A. P. L.; Antici, P.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4867181

Picosecond metrology of laser-driven proton bursts
journal, February 2016

  • Dromey, B.; Coughlan, M.; Senje, L.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10642

Magnetically Induced Collisionless Coupling between Counterstreaming Laser-Produced Plasmas
journal, August 1973

  • Cheung, Augustine Y.; Goforth, R. R.; Koopman, David W.
  • Physical Review Letters, Vol. 31, Issue 7
  • DOI: 10.1103/PhysRevLett.31.429

Collisionless plasma interpenetration in a strong magnetic field for laboratory astrophysics experiments
journal, February 2014

  • Korneev, Ph.; d'Humières, E.; Tikhonchuk, V.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4866598

Extreme Particle Acceleration in Magnetic Reconnection Layers: Application to the Gamma-Ray Flares in the crab Nebula
journal, February 2012

  • Cerutti, Benoît; Uzdensky, Dmitri A.; Begelman, Mitchell C.
  • The Astrophysical Journal, Vol. 746, Issue 2
  • DOI: 10.1088/0004-637X/746/2/148

Numerical simulations of energy transfer in counter-streaming plasmas
journal, March 2013


Mediation of the solar wind termination shock by non-thermal ions
journal, July 2008

  • Decker, R. B.; Krimigis, S. M.; Roelof, E. C.
  • Nature, Vol. 454, Issue 7200
  • DOI: 10.1038/nature07030

A novel platform to study magnetized high-velocity collisionless shocks
journal, December 2015


Particle Energization in an Expanding Magnetized Relativistic Plasma
journal, February 2003


Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
journal, January 2015

  • Huntington, C. M.; Fiuza, F.; Ross, J. S.
  • Nature Physics, Vol. 11, Issue 2
  • DOI: 10.1038/nphys3178

Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?
journal, July 2008

  • Spitkovsky, Anatoly
  • The Astrophysical Journal, Vol. 682, Issue 1
  • DOI: 10.1086/590248

Direct Experimental Evidence of Back-Surface Ion Acceleration from Laser-Irradiated Gold Foils
journal, December 2004


Ion Dynamics and Acceleration in Relativistic Shocks
journal, April 2009


Nonthermal Electrons at High Mach Number Shocks: Electron Shock Surfing Acceleration
journal, June 2002

  • Hoshino, M.; Shimada, N.
  • The Astrophysical Journal, Vol. 572, Issue 2
  • DOI: 10.1086/340454

Filamentation Instability of Counterstreaming Laser-Driven Plasmas
journal, November 2013


Particle acceleration at astrophysical shocks: A theory of cosmic ray origin
journal, October 1987


TNSA-like plasmas collision in an ambient magnetic field as a route to astrophysical collisionless shock observation in a laboratory
journal, December 2015


The acceleration of cosmic rays in shock fronts - II
journal, March 1978


Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas
journal, September 2012

  • Kugland, N. L.; Ryutov, D. D.; Chang, P-Y.
  • Nature Physics, Vol. 8, Issue 11
  • DOI: 10.1038/nphys2434

Collisionless Coupling of Ion and Electron Temperatures in Counterstreaming Plasma Flows
journal, April 2013


A quasi-monoenergetic short time duration compact proton source for probing high energy density states of matter
journal, March 2021


Ion dynamics and acceleration in relativistic shocks
text, January 2009


Extreme particle acceleration in magnetic reconnection layers. Application to the gamma-ray flares in the Crab Nebula
text, January 2011


Simultaneous Acceleration of Protons and Electrons at Nonrelativistic Quasiparallel Collisionless Shocks
text, January 2014


3D MHD modeling of twisted coronal loops
text, January 2016


Particle Energization in an Expanding Magnetized Relativistic Plasma
text, January 2003


On particle acceleration and trapping by Poynting flux dominated flows
text, January 2005