Fuel-shell interface instability growth effects on the performance of room temperature direct-drive implosions
- Univ. of Rochester, NY (United States). Lab. for Laser Energetics, and Dept. of Mechanical Engineering
- Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Performance degradation in direct-drive inertial confinement fusion implosions is caused by several effects, one of which is Rayleigh-Taylor (RT) instability growth during the deceleration phase. In room-temperature plastic target implosions, deceleration-phase RT growth is enhanced by the density discontinuity and finite Atwood number at the fuel-shell interface. In this paper, the Atwood number of the interface is systematically varied by altering the ratio of deuterium to tritium (D:T) within the DT gas fill. It is shown that the stability of the interface is best characterized by the effective Atwood number, which is primarily determined by radiation heating of the shell and not by the composition of the fuel. Both simulation and experimental data show that yield performance scales with the fraction of D and T present in the fuel and that the observed inferred ion temperature asymmetry $$(ΔT_i = T_i^{max} - T_i^{min})$$, which indicates the presence of long-wavelength modes, has a small sensitivity to the different D:T ratios.
- Research Organization:
- Univ. of Rochester, NY (United States). Lab. for Laser Energetics
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- NA0001944
- OSTI ID:
- 1567842
- Report Number(s):
- 2018-331, 2479, 1519; 2018-331, 2479, 1519; TRN: US2100262
- Journal Information:
- Physics of Plasmas, Vol. 26, Issue 8; ISSN 1070-664X
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Hydro-scaling of direct-drive cylindrical implosions at the OMEGA and the National Ignition Facility
Dependence of Shell Mix on Feedthrough in Direct Drive Inertial Confinement Fusion