skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Numerical determination of monopole scaling dimension in parity-invariant three-dimensional noncompact QED

Abstract

We present a direct Monte Carlo determination of the scaling dimension of a topological defect operator in the infrared fixed point of a three-dimensional interacting quantum field theory. For this, we compute the free energy to introduce the background gauge field of the $Q$ = 1 monopole-antimonopole pair in threedimensional noncompact QED with $N$ = 2, 4 and 12 flavors of massless two-component fermions, and study its asymptotic logarithmic dependence on the monopole-antimonopole separation. We estimate the scaling dimension in the $N$ = 12 case to be consistent with the large-$N$ (free fermion) value. We find the deviations from this large-$N$ value for $N$ = 2 and 4 are positive but small, implying that the higher-order corrections in the large-$N$ expansion become mildly important for $N$ = 2, 4.

Authors:
; ORCiD logo
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
1566894
Alternate Identifier(s):
OSTI ID: 1570680
Report Number(s):
BNL-212180-2019-JAAM
Journal ID: ISSN 2470-0010; PRVDAQ; 054514
Grant/Contract Number:  
SC0012704
Resource Type:
Published Article
Journal Name:
Physical Review D
Additional Journal Information:
Journal Name: Physical Review D Journal Volume: 100 Journal Issue: 5; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS

Citation Formats

Karthik, Nikhil, and Narayanan, Rajamani. Numerical determination of monopole scaling dimension in parity-invariant three-dimensional noncompact QED. United States: N. p., 2019. Web. doi:10.1103/PhysRevD.100.054514.
Karthik, Nikhil, & Narayanan, Rajamani. Numerical determination of monopole scaling dimension in parity-invariant three-dimensional noncompact QED. United States. doi:10.1103/PhysRevD.100.054514.
Karthik, Nikhil, and Narayanan, Rajamani. Thu . "Numerical determination of monopole scaling dimension in parity-invariant three-dimensional noncompact QED". United States. doi:10.1103/PhysRevD.100.054514.
@article{osti_1566894,
title = {Numerical determination of monopole scaling dimension in parity-invariant three-dimensional noncompact QED},
author = {Karthik, Nikhil and Narayanan, Rajamani},
abstractNote = {We present a direct Monte Carlo determination of the scaling dimension of a topological defect operator in the infrared fixed point of a three-dimensional interacting quantum field theory. For this, we compute the free energy to introduce the background gauge field of the $Q$ = 1 monopole-antimonopole pair in threedimensional noncompact QED with $N$ = 2, 4 and 12 flavors of massless two-component fermions, and study its asymptotic logarithmic dependence on the monopole-antimonopole separation. We estimate the scaling dimension in the $N$ = 12 case to be consistent with the large-$N$ (free fermion) value. We find the deviations from this large-$N$ value for $N$ = 2 and 4 are positive but small, implying that the higher-order corrections in the large-$N$ expansion become mildly important for $N$ = 2, 4.},
doi = {10.1103/PhysRevD.100.054514},
journal = {Physical Review D},
number = 5,
volume = 100,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevD.100.054514

Figures / Tables:

FIG. 1 FIG. 1:more » $W$ $(ζ)$, is shown as a function of $ζ$ at different values of at fixed $L$ = 20 for the case of $N$ = 2 flavors. The different colored symbols correspond to different physical extents , and the bands are the cubic spline interpolation of the data points. The free energy for $Q$ = 1 monopole-antimonopole pair is given by the area under the curves, $∫$$^{1}_{0}$$W$$ (ζ)dζ$.« less

Save / Share:

Works referenced in this record:

Magnetic monopole plasma phase in ( 2 + 1 ) d compact quantum electrodynamics with fermionic matter
journal, July 2011


Topological excitations and Monte Carlo simulation of Abelian gauge theory
journal, November 1980


Compact gauge fields and the infrared catastrophe
journal, October 1975


Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: The Parent State of Quantum Phases
journal, May 2019


Monopole scaling dimension using Monte-Carlo simulation
journal, October 2018


Dynamics of compact quantum electrodynamics at large fermion flavor
journal, August 2019


Quantum Electrodynamics in d = 3 from the ε Expansion
journal, April 2016


Quark confinement and topology of gauge theories
journal, March 1977


Monopoles in CP N 1 model via the state-operator correspondence
journal, December 2008


Vortex tension as an order parameter in three-dimensional U(1) + Higgs theory
journal, April 1999


Deconfined Quantum Critical Points: Symmetries and Dualities
journal, September 2017


Critical behavior of ( 2 + 1 )-dimensional QED: 1 / N f corrections in the Landau gauge
journal, September 2016


Monopole operators from the 4 − ϵ expansion
journal, December 2016

  • Chester, Shai M.; Mezei, Márk; Pufu, Silviu S.
  • Journal of High Energy Physics, Vol. 2016, Issue 12
  • DOI: 10.1007/JHEP12(2016)015

No evidence for bilinear condensate in parity-invariant three-dimensional QED with massless fermions
journal, February 2016


Anomalous dimensions of monopole operators in three-dimensional quantum electrodynamics
journal, March 2014


Critical number of fermions in three-dimensional QED
journal, December 2016


Action of hedgehog instantons in the disordered phase of the (2 + 1)-dimensional CPN−1 model
journal, November 1990


Topological Disorder Operators in Three-Dimensional Conformal Field Theory
journal, November 2002


Nonperturbative beta function in three-dimensional electrodynamics
journal, July 2014


Conformal QED d , F -theorem and the ϵ expansion
journal, February 2016

  • Giombi, Simone; Klebanov, Igor R.; Tarnopolsky, Grigory
  • Journal of Physics A: Mathematical and Theoretical, Vol. 49, Issue 13
  • DOI: 10.1088/1751-8113/49/13/135403

Abelian gauge theories on the lattice: θ-Terms and compact gauge theory with(out) monopoles
journal, June 2019


Scaling dimensions in QED3 from the ϵ-expansion
journal, December 2017

  • Di Pietro, Lorenzo; Stamou, Emmanuel
  • Journal of High Energy Physics, Vol. 2017, Issue 12
  • DOI: 10.1007/JHEP12(2017)054

Large Nf quantum field theory
journal, December 2018


Towards bootstrapping QED3
journal, August 2016

  • Chester, Shai M.; Pufu, Silviu S.
  • Journal of High Energy Physics, Vol. 2016, Issue 8
  • DOI: 10.1007/JHEP08(2016)019

Anomalous dimensions of scalar operators in QED3
journal, August 2016

  • Chester, Shai M.; Pufu, Silviu S.
  • Journal of High Energy Physics, Vol. 2016, Issue 8
  • DOI: 10.1007/JHEP08(2016)069

Monopoles in 2 + 1-dimensional conformal field theories with global U(1) symmetry
journal, September 2013


Phase of the fermion determinant in QED 3 using a gauge invariant lattice regularization
journal, July 2015


Noncompact three-dimensional quantum electrodynamics with Nf=1 and Nf=4
journal, September 2004


Scale invariance of parity-invariant three-dimensional QED
journal, September 2016


Strong coupling and mean field methods in lattice gauge theories
journal, December 1983


Mandelstam-'t Hooft duality in abelian lattice models
journal, July 1978


Non-compact QED3 with Nf⩾2
journal, November 2002


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.