DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Angle-Resolved Transport Measurements Reveal Electronic Nematicity in Cuprate Superconductors

Abstract

Observations of spontaneous breaking of the rotational symmetry in an electron fluid, the so-called “electronic nematicity,” have been reported in several quantum materials. We have developed several different methods, based on angle-resolved transport measurements, to determine the amplitude and the director of the nematic order. Here, we present methods that are applicable to thin films or single crystals, illustrate them with transport data obtained on copper oxide superconductors, and discuss their relative advantages and disadvantages.

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [1]; ORCiD logo [2]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States); Yale Univ., New Haven, CT (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1566873
Report Number(s):
BNL-212112-2019-JAAM
Journal ID: ISSN 1557-1939; TRN: US2001009
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Superconductivity and Novel Magnetism
Additional Journal Information:
Journal Volume: 33; Journal Issue: 1; Journal ID: ISSN 1557-1939
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Electronic Nematicity; Copper Oxide Superconductor; Electrical transport

Citation Formats

Wu, Jie, Bollinger, A. T., He, X., Gu, G. D., Miao, H., Dean, M. P. M., Robinson, I. K., and Božović, Ivan. Angle-Resolved Transport Measurements Reveal Electronic Nematicity in Cuprate Superconductors. United States: N. p., 2019. Web. doi:10.1007/s10948-019-05222-5.
Wu, Jie, Bollinger, A. T., He, X., Gu, G. D., Miao, H., Dean, M. P. M., Robinson, I. K., & Božović, Ivan. Angle-Resolved Transport Measurements Reveal Electronic Nematicity in Cuprate Superconductors. United States. https://doi.org/10.1007/s10948-019-05222-5
Wu, Jie, Bollinger, A. T., He, X., Gu, G. D., Miao, H., Dean, M. P. M., Robinson, I. K., and Božović, Ivan. Thu . "Angle-Resolved Transport Measurements Reveal Electronic Nematicity in Cuprate Superconductors". United States. https://doi.org/10.1007/s10948-019-05222-5. https://www.osti.gov/servlets/purl/1566873.
@article{osti_1566873,
title = {Angle-Resolved Transport Measurements Reveal Electronic Nematicity in Cuprate Superconductors},
author = {Wu, Jie and Bollinger, A. T. and He, X. and Gu, G. D. and Miao, H. and Dean, M. P. M. and Robinson, I. K. and Božović, Ivan},
abstractNote = {Observations of spontaneous breaking of the rotational symmetry in an electron fluid, the so-called “electronic nematicity,” have been reported in several quantum materials. We have developed several different methods, based on angle-resolved transport measurements, to determine the amplitude and the director of the nematic order. Here, we present methods that are applicable to thin films or single crystals, illustrate them with transport data obtained on copper oxide superconductors, and discuss their relative advantages and disadvantages.},
doi = {10.1007/s10948-019-05222-5},
journal = {Journal of Superconductivity and Novel Magnetism},
number = 1,
volume = 33,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: a, The lithography pattern used for the ‘sun-beam’ ARTR method. The current runs along one of the Hall bars (grey); the voltages are recorded along and transverse to the bar. The inset shows the complete sunbeam containing 36 Hall bars. b, The measured angular dependence of ρT andmore » ρ on the angle φ for a La1.96Sr0.04CuO4 thin film at T = 295 K. The black dots and the blue diamonds indicate the experimental data. The solid red line is the best fit to the expression $ρ^{0}_{T}$sin [2(𝜙α)], where $ρ^{0}_{T}$ and α are the fitting parameters. The dotted line was obtained by shifting the solid red line by 45° to the left and up by $\bar{ρ}$, the angular average of ρ(φ). The dotted red line agrees with the measured ρ(φ) values reasonably well, without any adjustments.« less

Save / Share:

Works referenced in this record:

Duality in 2+1D quantum elasticity: superconductivity and quantum nematic order
journal, March 2004


Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor
journal, November 2006

  • Abdel-Jawad, M.; Kennett, M. P.; Balicas, L.
  • Nature Physics, Vol. 2, Issue 12
  • DOI: 10.1038/nphys449

Spontaneous breaking of rotational symmetry in copper oxide superconductors
journal, July 2017


Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor
journal, January 2010


Spin-Orbit Interactions and the Nematicity Observed in the Fe-Based Superconductors
journal, April 2015


Anomalous independence of interface superconductivity from carrier density
journal, August 2013

  • Wu, J.; Pelleg, O.; Logvenov, G.
  • Nature Materials, Vol. 12, Issue 10
  • DOI: 10.1038/nmat3719

Scale-invariant magnetoresistance in a cuprate superconductor
journal, August 2018


Topological Defects Coupling Smectic Modulations to Intra-Unit-Cell Nematicity in Cuprates
journal, July 2011


Magnetically driven suppression of nematic order in an iron-based superconductor
journal, May 2014

  • Avci, S.; Chmaissem, O.; Allred, J. M.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4845

Using disorder to detect locally ordered electron nematics via hysteresis
journal, July 2011

  • Carlson, E. W.; Dahmen, K. A.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1375

Dual gauge field theory of quantum liquid crystals in two dimensions
journal, April 2017


High-Temperature Superconductivity in a Single Copper-Oxygen Plane
journal, October 2009


High-temperature interface superconductivity between metallic and insulating copper oxides
journal, October 2008

  • Gozar, A.; Logvenov, G.; Kourkoutis, L. Fitting
  • Nature, Vol. 455, Issue 7214, p. 782-785
  • DOI: 10.1038/nature07293

Detecting Electronic Nematicity by the Angle-Resolved Transverse Resistivity Measurements
journal, October 2018

  • Wu, J.; Bollinger, A. T.; He, X.
  • Journal of Superconductivity and Novel Magnetism, Vol. 32, Issue 6
  • DOI: 10.1007/s10948-018-4885-3

Superconductor–insulator transition in La2 − xSr x CuO4 at the pair quantum resistance
journal, April 2011


Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal
journal, August 2013

  • Dean, M. P. M.; Dellea, G.; Springell, R. S.
  • Nature Materials, Vol. 12, Issue 11
  • DOI: 10.1038/nmat3723

Dependence of the critical temperature in overdoped copper oxides on superfluid density
journal, August 2016


Electronic liquid-crystal phases of a doped Mott insulator
journal, June 1998

  • Kivelson, S. A.; Fradkin, E.; Emery, V. J.
  • Nature, Vol. 393, Issue 6685
  • DOI: 10.1038/31177

Unusual Nernst Effect Suggesting Time-Reversal Violation in the Striped Cuprate Superconductor La 2 x Ba x CuO 4
journal, December 2011


Optical Birefringence and Dichroism of Cuprate Superconductors in the THz Regime
journal, April 2014


Method for Measuring Electrical Resistivity of Anisotropic Materials
journal, June 1971

  • Montgomery, H. C.
  • Journal of Applied Physics, Vol. 42, Issue 7
  • DOI: 10.1063/1.1660656

Spin excitations in a single La2CuO4 layer
journal, September 2012

  • Dean, M. P. M.; Springell, R. S.; Monney, C.
  • Nature Materials, Vol. 11, Issue 10
  • DOI: 10.1038/nmat3409

What drives nematic order in iron-based superconductors?
journal, January 2014

  • Fernandes, R. M.; Chubukov, A. V.; Schmalian, J.
  • Nature Physics, Vol. 10, Issue 2
  • DOI: 10.1038/nphys2877

Locating the Missing Superconducting Electrons in the Overdoped Cuprates La 2 x Sr x CuO 4
journal, January 2019


Spatial complexity due to bulk electronic nematicity in a superconducting underdoped cuprate
journal, January 2012

  • Phillabaum, B.; Carlson, E. W.; Dahmen, K. A.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1920

Electronic Liquid Crystal State in the High-Temperature Superconductor YBa2Cu3O6.45
journal, January 2008


Anomalous thermal diffusivity in underdoped YBa 2 Cu 3 O 6+x
journal, May 2017

  • Zhang, Jiecheng; Levenson-Falk, Eli M.; Ramshaw, B. J.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 21
  • DOI: 10.1073/pnas.1703416114

A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy
journal, November 2016

  • Zhao, L.; Belvin, C. A.; Liang, R.
  • Nature Physics, Vol. 13, Issue 3
  • DOI: 10.1038/nphys3962

Nematic Fermi Fluids in Condensed Matter Physics
journal, August 2010


Strongly anisotropic transport in higher two-dimensional Landau levels
journal, January 1999


Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states
journal, July 2010

  • Lawler, M. J.; Fujita, K.; Lee, Jhinhwan
  • Nature, Vol. 466, Issue 7304
  • DOI: 10.1038/nature09169

Simultaneous Transitions in Cuprate Momentum-Space Topology and Electronic Symmetry Breaking
journal, May 2014


Epitaxial Strain and Superconductivity in L a 2 x S r x C u O 4 Thin Films
journal, August 2002


No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor
journal, April 2003

  • Bozovic, I.; Logvenov, G.; Verhoeven, M. A. J.
  • Nature, Vol. 422, Issue 6934
  • DOI: 10.1038/nature01544

Formation of a Nematic Fluid at High Fields in Sr3Ru2O7
journal, January 2007


Works referencing / citing this record:

Strain and Electronic Nematicity in La2-xSrxCuO4
journal, November 2019

  • Bollinger, Anthony T.; Wu, Ze-Bin; Wu, Longlong
  • Journal of Superconductivity and Novel Magnetism, Vol. 33, Issue 1
  • DOI: 10.1007/s10948-019-05327-x

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.