skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on September 5, 2020

Title: Secularly powered outflows from AGNs: the dominance of non-merger driven supermassive black hole growth

Abstract

ABSTRACT Recent observations and simulations have revealed the dominance of secular processes over mergers in driving the growth of both supermassive black holes (SMBHs) and galaxy evolution. Here, we obtain narrow-band imaging of AGN powered outflows in a sample of 12 galaxies with disc-dominated morphologies, whose history is assumed to be merger-free. We detect outflows in 10/12 sources in narrow-band imaging of the $$\mathrm{[O\, \small {III}] }$$ $$5007~\mathring{\rm A}$$ emission using filters on the Shane-3m telescope. We calculate a mean outflow rate for these AGNs of $$0.95\pm 0.14~\rm {M}_{\odot }~\rm {yr}^{-1}$$. This exceeds the mean accretion rate of their SMBHs ($$0.054\pm 0.039~\rm {M}_{\odot }~\rm {yr}^{-1}$$) by a factor of 18. Assuming that the galaxy must provide at least enough material to power both the AGN and outflow, this gives a lower limit on the average inflow rate of $$1.01\pm 0.14~\rm {M}_{\odot }~\rm {yr}^{-1}$$, a rate which simulations show can be achieved by bars, spiral arms, and cold accretion. We compare our disc-dominated sample to a sample of nearby AGNs with merger dominated histories and show that the black hole accretion rates in our sample are five times higher (4.2σ) and the outflow rates are five times lower (2.6σ). We suggest that this could be a result of the geometry of the smooth, planar inflow in a secular dominated system, which is both spinning up the black hole to increase accretion efficiency and less affected by feedback from the outflow, than in a merger-driven system with chaotic quasi-spherical inflows. This work provides further evidence that secular processes are sufficient to fuel SMBH growth.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4]
  1. Oxford Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK, School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
  2. Physics Department, Lancaster University, Lancaster, LA1 4YB, UK, Center for Astrophysics and Space Sciences (CASS), Department of Physics, University of California, San Diego, CA 92093, USA
  3. Oxford Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
  4. Center for Astrophysics and Space Sciences (CASS), Department of Physics, University of California, San Diego, CA 92093, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1566186
Resource Type:
Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society Journal Volume: 489 Journal Issue: 3; Journal ID: ISSN 0035-8711
Publisher:
Oxford University Press
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Smethurst, R. J., Simmons, B. D., Lintott, C. J., and Shanahan, J. Secularly powered outflows from AGNs: the dominance of non-merger driven supermassive black hole growth. United Kingdom: N. p., 2019. Web. doi:10.1093/mnras/stz2443.
Smethurst, R. J., Simmons, B. D., Lintott, C. J., & Shanahan, J. Secularly powered outflows from AGNs: the dominance of non-merger driven supermassive black hole growth. United Kingdom. doi:10.1093/mnras/stz2443.
Smethurst, R. J., Simmons, B. D., Lintott, C. J., and Shanahan, J. Thu . "Secularly powered outflows from AGNs: the dominance of non-merger driven supermassive black hole growth". United Kingdom. doi:10.1093/mnras/stz2443.
@article{osti_1566186,
title = {Secularly powered outflows from AGNs: the dominance of non-merger driven supermassive black hole growth},
author = {Smethurst, R. J. and Simmons, B. D. and Lintott, C. J. and Shanahan, J.},
abstractNote = {ABSTRACT Recent observations and simulations have revealed the dominance of secular processes over mergers in driving the growth of both supermassive black holes (SMBHs) and galaxy evolution. Here, we obtain narrow-band imaging of AGN powered outflows in a sample of 12 galaxies with disc-dominated morphologies, whose history is assumed to be merger-free. We detect outflows in 10/12 sources in narrow-band imaging of the $\mathrm{[O\, \small {III}] }$ $5007~\mathring{\rm A}$ emission using filters on the Shane-3m telescope. We calculate a mean outflow rate for these AGNs of $0.95\pm 0.14~\rm {M}_{\odot }~\rm {yr}^{-1}$. This exceeds the mean accretion rate of their SMBHs ($0.054\pm 0.039~\rm {M}_{\odot }~\rm {yr}^{-1}$) by a factor of 18. Assuming that the galaxy must provide at least enough material to power both the AGN and outflow, this gives a lower limit on the average inflow rate of $1.01\pm 0.14~\rm {M}_{\odot }~\rm {yr}^{-1}$, a rate which simulations show can be achieved by bars, spiral arms, and cold accretion. We compare our disc-dominated sample to a sample of nearby AGNs with merger dominated histories and show that the black hole accretion rates in our sample are five times higher (4.2σ) and the outflow rates are five times lower (2.6σ). We suggest that this could be a result of the geometry of the smooth, planar inflow in a secular dominated system, which is both spinning up the black hole to increase accretion efficiency and less affected by feedback from the outflow, than in a merger-driven system with chaotic quasi-spherical inflows. This work provides further evidence that secular processes are sufficient to fuel SMBH growth.},
doi = {10.1093/mnras/stz2443},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 489,
place = {United Kingdom},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 5, 2020
Publisher's Version of Record

Save / Share: