Low‐Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad
- Authors:
-
- Graduate School of Genome Science and Technology University of Tennessee Knoxville TN 37996 USA, Present address: Department of Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York NY 10029 USA
- Department of Biochemistry and Cellular and Molecular Biology University of Tennessee Knoxville TN 37996 USA
- Molecular Interaction Analysis Shared Resource St. Jude Children's Research Hospital Memphis TN 38105 USA
- Department of Structural Biology St. Jude Children's Research Hospital Memphis TN 38105 USA
- Department of Biochemistry and Cellular and Molecular Biology University of Tennessee Knoxville TN 37996 USA, National Science Foundation Alexandria VA 22314 USA
- Department of Structural Biology St. Jude Children's Research Hospital Memphis TN 38105 USA, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
- Publication Date:
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1566162
- Grant/Contract Number:
- FWP ERKP291
- Resource Type:
- Publisher's Accepted Manuscript
- Journal Name:
- Angewandte Chemie (International Edition)
- Additional Journal Information:
- Journal Name: Angewandte Chemie (International Edition) Journal Volume: 58 Journal Issue: 45; Journal ID: ISSN 1433-7851
- Publisher:
- Wiley Blackwell (John Wiley & Sons)
- Country of Publication:
- Germany
- Language:
- English
Citation Formats
Kumar, Prashasti, Agarwal, Pratul K., Waddell, M. Brett, Mittag, Tanja, Serpersu, Engin H., and Cuneo, Matthew J. Low‐Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad. Germany: N. p., 2019.
Web. doi:10.1002/anie.201908535.
Kumar, Prashasti, Agarwal, Pratul K., Waddell, M. Brett, Mittag, Tanja, Serpersu, Engin H., & Cuneo, Matthew J. Low‐Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad. Germany. https://doi.org/10.1002/anie.201908535
Kumar, Prashasti, Agarwal, Pratul K., Waddell, M. Brett, Mittag, Tanja, Serpersu, Engin H., and Cuneo, Matthew J. Tue .
"Low‐Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad". Germany. https://doi.org/10.1002/anie.201908535.
@article{osti_1566162,
title = {Low‐Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad},
author = {Kumar, Prashasti and Agarwal, Pratul K. and Waddell, M. Brett and Mittag, Tanja and Serpersu, Engin H. and Cuneo, Matthew J.},
abstractNote = {},
doi = {10.1002/anie.201908535},
journal = {Angewandte Chemie (International Edition)},
number = 45,
volume = 58,
place = {Germany},
year = {2019},
month = {9}
}
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/anie.201908535
https://doi.org/10.1002/anie.201908535
Other availability
Cited by: 3 works
Citation information provided by
Web of Science
Web of Science
Save to My Library
You must Sign In or Create an Account in order to save documents to your library.
Works referenced in this record:
Subangstrom Crystallography Reveals that Short Ionic Hydrogen Bonds, and Not a His-Asp Low-Barrier Hydrogen Bond, Stabilize the Transition State in Serine Protease Catalysis
journal, July 2006
- Fuhrmann, Cynthia N.; Daugherty, Matthew D.; Agard, David A.
- Journal of the American Chemical Society, Vol. 128, Issue 28
Electrostatic Interactions Guide the Active Site Face of a Structure-Specific Ribonuclease to Its RNA Substrate †
journal, August 2008
- Plantinga, Matthew J.; Korennykh, Alexei V.; Piccirilli, Joseph A.
- Biochemistry, Vol. 47, Issue 34
Structural Basis of Perturbed pKa Values of Catalytic Groups in Enzyme Active Sites
journal, February 2002
- Harris, Thomas K.; Turner, George J.
- IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), Vol. 53, Issue 2
An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: importance of late transition states in concerted mechanisms
journal, December 1993
- Gerlt, John A.; Gassman, Paul G.
- Journal of the American Chemical Society, Vol. 115, Issue 24
Plasticity of enzyme active sites
journal, August 2002
- Todd, Annabel E.; Orengo, Christine A.; Thornton, Janet M.
- Trends in Biochemical Sciences, Vol. 27, Issue 8
Short strong hydrogen bonds: can they explain enzymic catalysis?
journal, March 1996
- Peter Guthrie, J.
- Chemistry & Biology, Vol. 3, Issue 3
Protonation-State Dependence of Hydrogen Bond Strengths and Exchange Rates in a Serine Protease Catalytic Triad: Bovine Chymotrypsinogen A †
journal, January 1996
- Markley, John L.; Westler, William M.
- Biochemistry, Vol. 35, Issue 34
Ladungen verschieben Protonierungen: Neutronenbeugung zeigt, dass Anilin und 2-Aminopyridin protoniert an Trypsin binden
journal, March 2017
- Schiebel, Johannes; Gaspari, Roberto; Sandner, Anna
- Angewandte Chemie, Vol. 129, Issue 17
Encoding of Promiscuity in an Aminoglycoside Acetyltransferase
journal, October 2018
- Kumar, Prashasti; Selvaraj, Brinda; Serpersu, Engin H.
- Journal of Medicinal Chemistry, Vol. 61, Issue 22
A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad
journal, April 2018
- Kumar, Prashasti; Serpersu, Engin H.; Cuneo, Matthew J.
- Science Advances, Vol. 4, Issue 4
Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates
journal, August 2002
- Vetting, Matthew W.; Hegde, Subray S.; Javid-Majd, Farah
- Nature Structural Biology, Vol. 9, Issue 9
Protein Dynamics Are Influenced by the Order of Ligand Binding to an Antibiotic Resistance Enzyme
journal, December 2013
- Norris, Adrianne L.; Nickels, Jonathan; Sokolov, Alexei P.
- Biochemistry, Vol. 53, Issue 1
BIOCHEMISTRY: How Enzymes Work
journal, June 2008
- Ringe, D.; Petsko, G. A.
- Science, Vol. 320, Issue 5882
A low-barrier hydrogen bond in the catalytic triad of serine proteases
journal, June 1994
- Frey, P.; Whitt, S.; Tobin, J.
- Science, Vol. 264, Issue 5167
The Low Barrier Hydrogen Bond in Enzymatic Catalysis
journal, October 1998
- Cleland, W. Wallace; Frey, Perry A.; Gerlt, John A.
- Journal of Biological Chemistry, Vol. 273, Issue 40
Interactions of Coenzyme A with the Aminoglycoside Acetyltransferase (3)-IIIb and Thermodynamics of a Ternary System
journal, May 2010
- Norris, Adrianne L.; Serpersu, Engin H.
- Biochemistry, Vol. 49, Issue 19
X-ray Snapshot of HIV-1 Protease in Action: Observation of Tetrahedral Intermediate and Short Ionic Hydrogen Bond SIHB with Catalytic Aspartate
journal, May 2010
- Das, Amit; Mahale, Smita; Prashar, Vishal
- Journal of the American Chemical Society, Vol. 132, Issue 18
Hydrogen Bonding at the Active Site of Δ 5 -3-Ketosteroid Isomerase †
journal, December 1997
- Zhao, Qinjian; Abeygunawardana, Chitrananda; Gittis, Apostolos G.
- Biochemistry, Vol. 36, Issue 48
Ligand promiscuity through the eyes of the aminoglycoside N 3 acetyltransferase IIa : Molecular Basis of Ligand Promiscuity
journal, June 2013
- Norris, Adrianne L.; Serpersu, Engin H.
- Protein Science, Vol. 22, Issue 7
Direct evidence that an extended hydrogen-bonding network influences activation of pyridoxal 5′-phosphate in aspartate aminotransferase
journal, February 2017
- Dajnowicz, Steven; Parks, Jerry M.; Hu, Xiche
- Journal of Biological Chemistry, Vol. 292, Issue 14
Low-barrier hydrogen bonds and enzymic catalysis
journal, June 1994
- Cleland, W.; Kreevoy, M.
- Science, Vol. 264, Issue 5167
The low barrier hydrogen bond (LBHB) proposal revisited: The case of the Asp ··· His pair in serine proteases
journal, April 2004
- Schutz, Claudia N.; Warshel, Arieh
- Proteins: Structure, Function, and Bioinformatics, Vol. 55, Issue 3
Thermodynamics of an aminoglycoside modifying enzyme with low substrate promiscuity: The aminoglycoside N3 acetyltransferase-VIa : Thermodynamic Basis of Ligand Promiscuity
journal, March 2017
- Kumar, Prashasti; Serpersu, Engin H.
- Proteins: Structure, Function, and Bioinformatics, Vol. 85, Issue 7
Thermodynamics and Kinetics of Association of Antibiotics with the Aminoglycoside Acetyltransferase (3)-IIIb, a Resistance-Causing Enzyme
journal, May 2010
- Norris, Adrianne L.; Özen, Can; Serpersu, Engin H.
- Biochemistry, Vol. 49, Issue 19
Charges Shift Protonation: Neutron Diffraction Reveals that Aniline and 2-Aminopyridine Become Protonated Upon Binding to Trypsin
journal, March 2017
- Schiebel, Johannes; Gaspari, Roberto; Sandner, Anna
- Angewandte Chemie International Edition, Vol. 56, Issue 17
Thermodynamics of Aminoglycoside Binding to Aminoglycoside-3‘-phosphotransferase IIIa Studied by Isothermal Titration Calorimetry †
journal, November 2004
- Özen, Can; Serpersu, Engin H.
- Biochemistry, Vol. 43, Issue 46
Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation
journal, February 2013
- Batra, Jyotica; Szabó, András; Caulfield, Thomas R.
- Journal of Biological Chemistry, Vol. 288, Issue 14
Combined High-Resolution Neutron and X-ray Analysis of Inhibited Elastase Confirms the Active-Site Oxyanion Hole but Rules against a Low-Barrier Hydrogen Bond
journal, August 2009
- Tamada, Taro; Kinoshita, Takayoshi; Kurihara, Kazuo
- Journal of the American Chemical Society, Vol. 131, Issue 31
Electrostatic Origin of the Catalytic Power of Enzymes and the Role of Preorganized Active Sites
journal, October 1998
- Warshel, Arieh
- Journal of Biological Chemistry, Vol. 273, Issue 42
Solid State NMR Studies of Hydrogen Bonding in a Citrate Synthase Inhibitor Complex †
journal, June 1999
- Gu, Zhengtian; Drueckhammer, Dale G.; Kurz, Linda
- Biochemistry, Vol. 38, Issue 25
Probing Electrostatic Interactions along the Reaction Pathway of a Glycoside Hydrolase: Histidine Characterization by NMR Spectroscopy †
journal, June 2007
- Schubert, Mario; Poon, David K. Y.; Wicki, Jacqueline
- Biochemistry, Vol. 46, Issue 25
On low-barrier hydrogen bonds and enzyme catalysis
journal, July 1995
- Warshel, A.; Papazyan, A.; Kollman, P.
- Science, Vol. 269, Issue 5220