skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrostatic subframing and compressive-sensing video in transmission electron microscopy

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [2];  [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [2];  [4]; ORCiD logo [1]
  1. Integrated Dynamic Electron Solutions, Inc., Pleasanton, CA (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oregon State Univ., Corvallis, OR (United States)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
IDES, Inc., Pleasanton, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1566126
Alternate Identifier(s):
OSTI ID: 1564555; OSTI ID: 1650166
Report Number(s):
SAND-2020-8422J
Journal ID: ISSN 2329-7778; TRN: US2000979
Grant/Contract Number:  
AC04-94AL85000; SC0013104; NA-0003525; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Structural Dynamics
Additional Journal Information:
Journal Volume: 6; Journal Issue: 5; Journal ID: ISSN 2329-7778
Publisher:
American Crystallographic Association/AIP
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 36 MATERIALS SCIENCE; transmission electron microscopy; time resolution; compressive sensing; electrostatic subframing

Citation Formats

Reed, Bryan W., Moghadam, A. A., Bloom, R. S., Park, S. T., Monterrosa, A. M., Price, P. M., Barr, C. M., Briggs, S. A., Hattar, K., McKeown, J. T., and Masiel, D. J. Electrostatic subframing and compressive-sensing video in transmission electron microscopy. United States: N. p., 2019. Web. doi:10.1063/1.5115162.
Reed, Bryan W., Moghadam, A. A., Bloom, R. S., Park, S. T., Monterrosa, A. M., Price, P. M., Barr, C. M., Briggs, S. A., Hattar, K., McKeown, J. T., & Masiel, D. J. Electrostatic subframing and compressive-sensing video in transmission electron microscopy. United States. doi:10.1063/1.5115162.
Reed, Bryan W., Moghadam, A. A., Bloom, R. S., Park, S. T., Monterrosa, A. M., Price, P. M., Barr, C. M., Briggs, S. A., Hattar, K., McKeown, J. T., and Masiel, D. J. Mon . "Electrostatic subframing and compressive-sensing video in transmission electron microscopy". United States. doi:10.1063/1.5115162. https://www.osti.gov/servlets/purl/1566126.
@article{osti_1566126,
title = {Electrostatic subframing and compressive-sensing video in transmission electron microscopy},
author = {Reed, Bryan W. and Moghadam, A. A. and Bloom, R. S. and Park, S. T. and Monterrosa, A. M. and Price, P. M. and Barr, C. M. and Briggs, S. A. and Hattar, K. and McKeown, J. T. and Masiel, D. J.},
abstractNote = {},
doi = {10.1063/1.5115162},
journal = {Structural Dynamics},
number = 5,
volume = 6,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

FIG. 1 FIG. 1: General illustration of electrostatic subframing (ES) in a TEM. (a) A fast two-dimensional electrostatic deflector is inserted below the projector lens and well above the camera, allowing a square array of subframes to be defined (angles exaggerated for illustration). (b) A hypothetical image that could be captured inmore » a single acquisition in a 4 x 4-subframe mode (with TEM in diffraction mode) and using 1-to-1 sequential subframing, producing 16 diffraction patterns from one camera acquisition. (c) The CS mode replaces the 1-to-1 deflection sequence with a pseudorandom sequence shifting subframes multiple times per time slice, with typically 100 time slices and ~500 subframe transitions defined per camera exposure time. CS algorithms then allow 100 frames to be reconstructed from one exposure. (d) A typical measurement of a static sample (nano-crystalline platinum, acquired on the SNL I3TEM). Each subframe except for the upper-left sacrificial subframe is a 12ms exposure. (e) An example temporal measurement matrix $M$, showing how time is apportioned to each subframe during each time slice in pseudorandom mode. In this example, one sacrificial beam-blanker subframe was removed, leaving 15 for the main acquisition, thus 15 rows in the matrix. 100 time slices were used in this example (number of columns in the matrix).« less

Save / Share:

Works referenced in this record:

Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
journal, January 2006

  • Candes, Emmanuel J.; Tao, Terence
  • IEEE Transactions on Information Theory, Vol. 52, Issue 12, p. 5406-5425
  • DOI: 10.1109/TIT.2006.885507

Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy
journal, February 2016

  • Béché, A.; Goris, B.; Freitag, B.
  • Applied Physics Letters, Vol. 108, Issue 9
  • DOI: 10.1063/1.4943086

A sub-sampled approach to extremely low-dose STEM
journal, January 2018

  • Stevens, A.; Luzi, L.; Yang, H.
  • Applied Physics Letters, Vol. 112, Issue 4
  • DOI: 10.1063/1.5016192

The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images
journal, October 2013


Removing high contrast artifacts via digital inpainting in cryo-electron tomography: An application of compressed sensing
journal, May 2012

  • Song, Kahye; Comolli, Luis R.; Horowitz, Mark
  • Journal of Structural Biology, Vol. 178, Issue 2
  • DOI: 10.1016/j.jsb.2012.01.003

Orientation Maps Derived from TEM Diffraction Patterns Collected with an External CCD Camera
journal, September 2005


Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
journal, February 2006

  • Candes, E.J.; Romberg, J.; Tao, T.
  • IEEE Transactions on Information Theory, Vol. 52, Issue 2, p. 489-509
  • DOI: 10.1109/TIT.2005.862083

Rapid low dose electron tomography using a direct electron detection camera
journal, October 2015

  • Migunov, Vadim; Ryll, Henning; Zhuge, Xiaodong
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14516

Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy
journal, February 2008


Subsampling and inpainting approaches for electron tomography
journal, November 2017


Lasers in additive manufacturing: A review
journal, July 2017

  • Lee, Hyub; Lim, Chin Huat Joel; Low, Mun Ji
  • International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 4, Issue 3
  • DOI: 10.1007/s40684-017-0037-7

The restricted isometry property and its implications for compressed sensing
journal, May 2008


Compressed Sensing Performance Bounds Under Poisson Noise
journal, August 2010

  • Raginsky, Maxim; Willett, Rebecca M.; Harmany, Zachary T.
  • IEEE Transactions on Signal Processing, Vol. 58, Issue 8
  • DOI: 10.1109/TSP.2010.2049997

Atomic Resolution Defocused Electron Ptychography at Low Dose with a Fast, Direct Electron Detector
journal, March 2019


Nonlinear total variation based noise removal algorithms
journal, November 1992


Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution
journal, April 2015


Compressed sensing
journal, April 2006


Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy
journal, April 2005

  • Stratton, W. G.; Hamann, J.; Perepezko, J. H.
  • Applied Physics Letters, Vol. 86, Issue 14
  • DOI: 10.1063/1.1897830

Movie-mode dynamic electron microscopy
journal, January 2015

  • LaGrange, Thomas; Reed, Bryan W.; Masiel, Daniel J.
  • MRS Bulletin, Vol. 40, Issue 1
  • DOI: 10.1557/mrs.2014.282

The Evolution of Ultrafast Electron Microscope Instrumentation
journal, July 2009

  • Reed, B. W.; Armstrong, M. R.; Browning, N. D.
  • Microscopy and Microanalysis, Vol. 15, Issue 4
  • DOI: 10.1017/S1431927609090394

Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images
journal, January 2012

  • Zhou, Mingyuan; Chen, Haojun; Paisley, John
  • IEEE Transactions on Image Processing, Vol. 21, Issue 1, p. 130-144
  • DOI: 10.1109/TIP.2011.2160072

In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates
journal, February 2014

  • Egan, Garth C.; Sullivan, Kyle T.; LaGrange, Thomas
  • Journal of Applied Physics, Vol. 115, Issue 8
  • DOI: 10.1063/1.4867116

High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy
journal, January 2016

  • Tate, Mark W.; Purohit, Prafull; Chamberlain, Darol
  • Microscopy and Microanalysis, Vol. 22, Issue 1
  • DOI: 10.1017/S1431927615015664

Three-Dimensional Morphology of Iron Oxide Nanoparticles with Reactive Concave Surfaces. A Compressed Sensing-Electron Tomography (CS-ET) Approach
journal, November 2011

  • Saghi, Zineb; Holland, Daniel J.; Leary, Rowan
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl202253a

Grain Growth in Thin Films
journal, August 1990


Concurrent in situ ion irradiation transmission electron microscope
journal, November 2014

  • Hattar, K.; Bufford, D. C.; Buller, D. L.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 338
  • DOI: 10.1016/j.nimb.2014.08.002

Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode
journal, December 2016


A High-Speed Electron-Counting Direct Detection Camera for TEM
journal, July 2011


Various Compressed Sensing Setups Evaluated Against Shannon Sampling Under Constraint of Constant Illumination
journal, September 2019

  • Van den Broek, Wouter; Reed, Bryan W.; Beche, Armand
  • IEEE Transactions on Computational Imaging, Vol. 5, Issue 3
  • DOI: 10.1109/TCI.2019.2894950

Electron ptychography of 2D materials to deep sub-ångström resolution
journal, July 2018


Thermal conductivity and diffusivity of free‐standing silicon nitride thin films
journal, February 1995

  • Zhang, Xiang; Grigoropoulos, Costas P.
  • Review of Scientific Instruments, Vol. 66, Issue 2
  • DOI: 10.1063/1.1145989

Irreversible reactions studied with nanosecond transmission electron microscopy movies: Laser crystallization of phase change materials
journal, April 2013

  • Santala, M. K.; Reed, B. W.; Raoux, S.
  • Applied Physics Letters, Vol. 102, Issue 17
  • DOI: 10.1063/1.4803921

Surface-Enhanced Raman Spectroscopy
journal, July 2008


A pnCCD-based, fast direct single electron imaging camera for TEM and STEM
journal, April 2016


Enhancing Sparsity by Reweighted ℓ 1 Minimization
journal, October 2008

  • Candès, Emmanuel J.; Wakin, Michael B.; Boyd, Stephen P.
  • Journal of Fourier Analysis and Applications, Vol. 14, Issue 5-6
  • DOI: 10.1007/s00041-008-9045-x

Total Generalized Variation
journal, January 2010

  • Bredies, Kristian; Kunisch, Karl; Pock, Thomas
  • SIAM Journal on Imaging Sciences, Vol. 3, Issue 3
  • DOI: 10.1137/090769521

Templates for convex cone problems with applications to sparse signal recovery
journal, July 2011

  • Becker, Stephen R.; Candès, Emmanuel J.; Grant, Michael C.
  • Mathematical Programming Computation, Vol. 3, Issue 3
  • DOI: 10.1007/s12532-011-0029-5

Compressively Sensed Video Acquisition in Transmission Electron Microscopy
journal, July 2017

  • Reed, Bryan W.; Park, Sang Tae; Bloom, Ruth S.
  • Microscopy and Microanalysis, Vol. 23, Issue S1
  • DOI: 10.1017/S1431927617001106

Simulation of thin film grain structures—I. Grain growth stagnation
journal, August 1990


Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography
journal, March 2009


The effect of thermal grooving on grain boundary motion
journal, June 1958


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.