DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++

Abstract

The steady state radial electric field (Er) is measured by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Due to the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.

Authors:
 [1];  [2];  [2];  [3];  [4];  [4]
  1. Dalian Univ. of Technology (China); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Chinese Academy of Sciences (CAS), Hefei (China)
  4. Dalian Univ. of Technology (China)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1566019
Alternate Identifier(s):
OSTI ID: 1548560
Report Number(s):
LLNL-JRNL-737785
Journal ID: ISSN 0010-4655; 890841; TRN: US2000957
Grant/Contract Number:  
AC52-07NA27344; FG02-97ER54392
Resource Type:
Accepted Manuscript
Journal Name:
Computer Physics Communications
Additional Journal Information:
Journal Volume: 228; Journal Issue: C; Journal ID: ISSN 0010-4655
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Radial electric field; Tokamak boundary plasma transport; BOUT++

Citation Formats

Li, N. M., Xu, X. Q., Rognlien, T. D., Gui, B., Sun, J. Z., and Wang, D. Z. Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++. United States: N. p., 2018. Web. doi:10.1016/j.cpc.2018.03.003.
Li, N. M., Xu, X. Q., Rognlien, T. D., Gui, B., Sun, J. Z., & Wang, D. Z. Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++. United States. https://doi.org/10.1016/j.cpc.2018.03.003
Li, N. M., Xu, X. Q., Rognlien, T. D., Gui, B., Sun, J. Z., and Wang, D. Z. Sat . "Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++". United States. https://doi.org/10.1016/j.cpc.2018.03.003. https://www.osti.gov/servlets/purl/1566019.
@article{osti_1566019,
title = {Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++},
author = {Li, N. M. and Xu, X. Q. and Rognlien, T. D. and Gui, B. and Sun, J. Z. and Wang, D. Z.},
abstractNote = {The steady state radial electric field (Er) is measured by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Due to the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.},
doi = {10.1016/j.cpc.2018.03.003},
journal = {Computer Physics Communications},
number = C,
volume = 228,
place = {United States},
year = {Sat Mar 17 00:00:00 EDT 2018},
month = {Sat Mar 17 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Physics of the L to H transition in the DIII‐D tokamak
journal, June 1990

  • Burrell, K. H.; Carlstrom, T. N.; Doyle, E. J.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 6
  • DOI: 10.1063/1.859564

Physics of the L-mode to H-mode transition in tokamaks
journal, December 1992

  • Burrell, K. H.; Carlstrom, T. N.; Doyle, E. J.
  • Plasma Physics and Controlled Fusion, Vol. 34, Issue 13
  • DOI: 10.1088/0741-3335/34/13/014

Edge electric-field profiles of H-mode plasmas in the JFT-2M tokamak
journal, September 1990


Radial current in a tokamak caused by a biased electrode
journal, February 1992


Suppression of Large Edge-Localized Modes in High-Confinement DIII-D Plasmas with a Stochastic Magnetic Boundary
journal, June 2004


Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas
journal, June 2005


Prompt toroidal momentum balance with collisionless neutral beam injected torque in DIII-D
journal, November 2006

  • deGrassie, J. S.; Groebner, R. J.; Burrell, K. H.
  • Physics of Plasmas, Vol. 13, Issue 11
  • DOI: 10.1063/1.2374862

The effect of the radial electric field on the L–H transitions in tokamaks
journal, March 1992

  • Rozhansky, V.; Tendler, M.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 7
  • DOI: 10.1063/1.860463

Evolution of edge pedestal transport between edge-localized modes in DIII-D
journal, February 2015

  • Floyd, J. -P.; Stacey, W. M.; Groebner, R. J.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907780

Two-dimensional electric fields and drifts near the magnetic separatrix in divertor tokamaks
journal, May 1999

  • Rognlien, T. D.; Ryutov, D. D.; Mattor, N.
  • Physics of Plasmas, Vol. 6, Issue 5
  • DOI: 10.1063/1.873488

Plasma Edge Physics with B2-Eirene
journal, February 2006

  • Schneider, R.; Bonnin, X.; Borrass, K.
  • Contributions to Plasma Physics, Vol. 46, Issue 1-2
  • DOI: 10.1002/ctpp.200610001

Simulation of tokamak edge plasma including self-consistent electric fields
journal, April 2001


Influence of and ∇B drift terms in 2-D edge/SOL transport simulations
journal, March 1999


Simulation of plasma fluxes to material surfaces with self-consistent edge turbulence and transport for tokamaks
journal, March 2005


Nonlinear Simulations of Peeling-Ballooning Modes with Anomalous Electron Viscosity and their Role in Edge Localized Mode Crashes
journal, October 2010


Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code
journal, September 2011


Simulation of edge localized modes using BOUT++
journal, April 2011


Influence of equilibrium shear flow on peeling-ballooning instability and edge localized mode crash
journal, September 2012

  • Xi, P. W.; Xu, X. Q.; Wang, X. G.
  • Physics of Plasmas, Vol. 19, Issue 9
  • DOI: 10.1063/1.4751256

Nonlinear Simulations of Peeling-Ballooning Modes with Parallel Velocity Perturbation
journal, June 2012

  • Xia, T. Y.; Xu, X. Q.; Dudson, B. D.
  • Contributions to Plasma Physics, Vol. 52, Issue 5-6
  • DOI: 10.1002/ctpp.201210016

Five-field simulations of peeling-ballooning modes using BOUT++ code
journal, May 2013


2D simulations of transport dynamics during tokamak fuelling by supersonic molecular beam injection
journal, March 2014


Status and verification of edge plasma turbulence code BOUT
journal, June 2009


BOUT++: A framework for parallel plasma fluid simulations
journal, September 2009


Drift-ordered fluid equations for field-aligned modes in low-β collisional plasma with equilibrium pressure pedestals
journal, December 2003

  • Simakov, Andrei N.; Catto, Peter J.
  • Physics of Plasmas, Vol. 10, Issue 12
  • DOI: 10.1063/1.1623492

Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry
journal, January 2018


Electron temperature gradient induced instability in tokamak scrape-off layers
journal, February 1993


Low-to-high confinement transition simulations in divertor geometry
journal, May 2000

  • Xu, X. Q.; Cohen, R. H.; Rognlien, T. D.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874044

First results from Alcator‐C‐MOD*
journal, May 1994

  • Hutchinson, I. H.; Boivin, R.; Bombarda, F.
  • Physics of Plasmas, Vol. 1, Issue 5
  • DOI: 10.1063/1.870701

The Alcator C-Mod Program
journal, April 2007

  • Marmar, E. S.; Group, Alcator C-Mod
  • Fusion Science and Technology, Vol. 51, Issue 3
  • DOI: 10.13182/FST07-A1421

Hermes: global plasma edge fluid turbulence simulations
journal, April 2017


Works referencing / citing this record:

Simulations of tokamak boundary plasma turbulence transport in setting the divertor heat flux width
journal, October 2019


Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT++ framework
journal, January 2020

  • Li, N. M.; Xu, X. Q.; Hughes, J. W.
  • AIP Advances, Vol. 10, Issue 1
  • DOI: 10.1063/1.5126884

Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths
journal, May 2018

  • Chen, B.; Xu, X. Q.; Xia, T. Y.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5016582

Prediction of divertor heat flux width for ITER using BOUT++ transport and turbulence module
journal, February 2019