DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of Individual Terrestrial Gamma‐Ray Flashes With Lightning Leader Models and Fermi Gamma‐Ray Burst Monitor Data

Abstract

Abstract The Gamma‐ray Burst Monitor (GBM) onboard the Fermi spacecraft has observed many tens of sufficiently bright events, which are suitable for individual analysis. In our previous study, we fit individual, bright terrestrial gamma‐ray flashes (TGFs) with Relativistic Runaway Electron Avalanche (RREA) models for the first time. For relativistic‐feedback‐based models, the TGF‐producing electrons, which are seeded internally by a positive feedback effect, are usually accelerated in a large‐scale field with fully developed RREAs. Alternatively, lightning leader models may apply to either a large‐scale thunderstorm fields with fully developed RREAs or to inhomogeneous fields in front of lightning leaders where RREAs only develop partially. The predictions of the latter, inhomogeneous models for the TGF‐beaming geometry show some differences from estimations of the relativistic feedback models in homogeneous fields. In this work, we analyze a large sample of 66 bright Fermi GBM TGFs in the framework of lightning leader models, making comparisons with previous results from the homogeneous‐field RREA models. In most cases, the spectral analysis does not strongly favor one mechanism over the other, with 59% of the TGF events being best fit with the fully developed RREA mechanism, which corresponds to high‐potential leader models. The majority of the GBM‐measured TGFsmore » can be best fit if the source altitude is below 15 km and 70% of events best fit by leader models cannot be satisfactorily modeled unless a tilted photon beam is used. For several spectrally soft TGFs, the tilted beam low‐potential leader model can best fit the data.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4]; ORCiD logo [5]; ORCiD logo [1]; ORCiD logo [6]; ORCiD logo [7]
  1. Center for Space Plasma and Aeronomic Research The University of Alabama in Huntsville Huntsville AL USA
  2. Department of Aerospace Engineering Sciences University of Colorado Boulder Boulder CO USA
  3. LPC2E, University of Orleans, CNRS Orleans France
  4. Center for Space Plasma and Aeronomic Research The University of Alabama in Huntsville Huntsville AL USA, Department of Space Science The University of Alabama in Huntsville Huntsville AL USA
  5. Department of Physics and Space Science Center (EOS) University of New Hampshire Durham NH USA
  6. Science and Technology Institute Universities Space Research Association Huntsville AL USA
  7. Department of Space Science The University of Alabama in Huntsville Huntsville AL USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1565984
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Space Physics
Additional Journal Information:
Journal Name: Journal of Geophysical Research. Space Physics Journal Volume: 124 Journal Issue: 8; Journal ID: ISSN 2169-9380
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English

Citation Formats

Mailyan, B. G., Xu, W., Celestin, S., Briggs, M. S., Dwyer, J. R., Cramer, E. S., Roberts, O. J., and Stanbro, M.. Analysis of Individual Terrestrial Gamma‐Ray Flashes With Lightning Leader Models and Fermi Gamma‐Ray Burst Monitor Data. United States: N. p., 2019. Web. doi:10.1029/2019JA026912.
Mailyan, B. G., Xu, W., Celestin, S., Briggs, M. S., Dwyer, J. R., Cramer, E. S., Roberts, O. J., & Stanbro, M.. Analysis of Individual Terrestrial Gamma‐Ray Flashes With Lightning Leader Models and Fermi Gamma‐Ray Burst Monitor Data. United States. https://doi.org/10.1029/2019JA026912
Mailyan, B. G., Xu, W., Celestin, S., Briggs, M. S., Dwyer, J. R., Cramer, E. S., Roberts, O. J., and Stanbro, M.. Sat . "Analysis of Individual Terrestrial Gamma‐Ray Flashes With Lightning Leader Models and Fermi Gamma‐Ray Burst Monitor Data". United States. https://doi.org/10.1029/2019JA026912.
@article{osti_1565984,
title = {Analysis of Individual Terrestrial Gamma‐Ray Flashes With Lightning Leader Models and Fermi Gamma‐Ray Burst Monitor Data},
author = {Mailyan, B. G. and Xu, W. and Celestin, S. and Briggs, M. S. and Dwyer, J. R. and Cramer, E. S. and Roberts, O. J. and Stanbro, M.},
abstractNote = {Abstract The Gamma‐ray Burst Monitor (GBM) onboard the Fermi spacecraft has observed many tens of sufficiently bright events, which are suitable for individual analysis. In our previous study, we fit individual, bright terrestrial gamma‐ray flashes (TGFs) with Relativistic Runaway Electron Avalanche (RREA) models for the first time. For relativistic‐feedback‐based models, the TGF‐producing electrons, which are seeded internally by a positive feedback effect, are usually accelerated in a large‐scale field with fully developed RREAs. Alternatively, lightning leader models may apply to either a large‐scale thunderstorm fields with fully developed RREAs or to inhomogeneous fields in front of lightning leaders where RREAs only develop partially. The predictions of the latter, inhomogeneous models for the TGF‐beaming geometry show some differences from estimations of the relativistic feedback models in homogeneous fields. In this work, we analyze a large sample of 66 bright Fermi GBM TGFs in the framework of lightning leader models, making comparisons with previous results from the homogeneous‐field RREA models. In most cases, the spectral analysis does not strongly favor one mechanism over the other, with 59% of the TGF events being best fit with the fully developed RREA mechanism, which corresponds to high‐potential leader models. The majority of the GBM‐measured TGFs can be best fit if the source altitude is below 15 km and 70% of events best fit by leader models cannot be satisfactorily modeled unless a tilted photon beam is used. For several spectrally soft TGFs, the tilted beam low‐potential leader model can best fit the data.},
doi = {10.1029/2019JA026912},
journal = {Journal of Geophysical Research. Space Physics},
number = 8,
volume = 124,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2019JA026912

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Compton scattering in terrestrial gamma-ray flashes detected with the Fermi gamma-ray burst monitor
journal, August 2014


Production altitude and time delays of the terrestrial gamma flashes: Revisiting the Burst and Transient Source Experiment spectra: TGF PRODUCTION ALTITUDES AND TIME DELAYS
journal, February 2008

  • Østgaard, N.; Gjesteland, T.; Stadsnes, J.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A2
  • DOI: 10.1029/2007JA012618

Fluence distribution of terrestrial gamma ray flashes observed by the Fermi Gamma-ray Burst Monitor: FLUENCE DISTRIBUTION OF FERMI GBM TGFs
journal, October 2013

  • Tierney, D.; Briggs, M. S.; Fitzpatrick, G.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 10
  • DOI: 10.1002/jgra.50580

Pulse properties of terrestrial gamma-ray flashes detected by the Fermi Gamma-Ray Burst Monitor
journal, July 2014

  • Foley, S.; Fitzpatrick, G.; Briggs, M. S.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 7
  • DOI: 10.1002/2014JA019805

A novel type of transient luminous event produced by terrestrial gamma‐ray flashes
journal, March 2017

  • Xu, Wei; Celestin, Sebastien; Pasko, Victor P.
  • Geophysical Research Letters, Vol. 44, Issue 5
  • DOI: 10.1002/2016GL072400

Terrestrial Gamma-Ray Flashes as Powerful Particle Accelerators
journal, January 2011


Characterizing the source properties of terrestrial gamma ray flashes: Dwyer Et Al: Source of TGFS
journal, August 2017

  • Dwyer, Joseph R.; Liu, Ningyu; Eric Grove, J.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 8
  • DOI: 10.1002/2017JA024141

Production of very high potential differences by intracloud lightning discharges in connection with terrestrial gamma ray flashes: HIGH POTENTIAL DIFFERENCE IN IC FLASHES
journal, February 2013

  • Mallios, Sotirios A.; Celestin, Sebastien; Pasko, Victor P.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 2
  • DOI: 10.1002/jgra.50109

Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons in lightning: NONEQUILIBRIUM TGF SPECTRA
journal, May 2012

  • Celestin, Sebastien; Xu, Wei; Pasko, V. P.
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A5
  • DOI: 10.1029/2012JA017535

Terrestrial gamma-ray flashes in the Fermi era: Improved observations and analysis methods: IMPROVED FERMI TGF OBSERVATIONS
journal, June 2013

  • Briggs, Michael S.; Xiong, Shaolin; Connaughton, Valerie
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 6
  • DOI: 10.1002/jgra.50205

Analytical modeling of pulse-pileup distortion using the true pulse shape; applications to Fermi-GBM
journal, July 2013

  • Chaplin, Vandiver; Bhat, Narayana; Briggs, Michael S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 717
  • DOI: 10.1016/j.nima.2013.03.067

Effects of dead time losses on terrestrial gamma ray flash measurements with the Burst and Transient Source Experiment: EFFECTS OF DEAD TIME IN BATSE TGF
journal, May 2010

  • Gjesteland, T.; Østgaard, N.; Connell, P. H.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A5
  • DOI: 10.1029/2009JA014578

Lightning leader altitude progression in terrestrial gamma‐ray flashes
journal, September 2015

  • Cummer, Steven A.; Lyu, Fanchao; Briggs, Michael S.
  • Geophysical Research Letters, Vol. 42, Issue 18
  • DOI: 10.1002/2015GL065228

Observation of intrinsically bright terrestrial gamma ray flashes from the Mediterranean basin
journal, December 2015

  • Gjesteland, T.; Østgaard, N.; Laviola, S.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 23
  • DOI: 10.1002/2015JD023704

Low-energy electron production by relativistic runaway electron avalanches in air: LOW-ENERGY ELECTRONS
journal, September 2011

  • Dwyer, Joseph R.; Babich, Leonid P.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A9
  • DOI: 10.1029/2011JA016494

First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor: GBM TGF RESULTS
journal, July 2010

  • Briggs, M. S.; Fishman, G. J.; Connaughton, V.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A7
  • DOI: 10.1029/2009JA015242

Constraints on terrestrial gamma ray flash production from satellite observation: CONSTRAINTS ON TGF PARAMETERS
journal, April 2007

  • Carlson, B. E.; Lehtinen, N. G.; Inan, U. S.
  • Geophysical Research Letters, Vol. 34, Issue 8
  • DOI: 10.1029/2006GL029229

Relative detection efficiency of the World Wide Lightning Location Network: RELATIVE DETECTION EFFICIENCY OF WWLLN
journal, December 2012

  • Hutchins, M. L.; Holzworth, R. H.; Brundell, J. B.
  • Radio Science, Vol. 47, Issue 6
  • DOI: 10.1029/2012RS005049

A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations: RUNAWAY BREAKDOWN AND TGFS
journal, November 2005

  • Dwyer, J. R.; Smith, D. M.
  • Geophysical Research Letters, Vol. 32, Issue 22
  • DOI: 10.1029/2005GL023848

The true fluence distribution of terrestrial gamma flashes at satellite altitude: TGF FLUENCE DISTRIBUTION FROM SPACE
journal, March 2012

  • Østgaard, N.; Gjesteland, T.; Hansen, R. S.
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A3
  • DOI: 10.1029/2011JA017365

Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin
journal, May 1994


The First Fermi -GBM Terrestrial Gamma Ray Flash Catalog
journal, May 2018

  • Roberts, O. J.; Fitzpatrick, G.; Stanbro, M.
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 5
  • DOI: 10.1029/2017JA024837

Optical emissions associated with terrestrial gamma ray flashes: XU ET AL.
journal, February 2015

  • Xu, Wei; Celestin, Sebastien; Pasko, Victor P.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 2
  • DOI: 10.1002/2014JA020425

Imaging lightning intracloud initial stepped leaders by low‐frequency interferometric lightning mapping array
journal, May 2016

  • Lyu, Fanchao; Cummer, Steven A.; Lu, Gaopeng
  • Geophysical Research Letters, Vol. 43, Issue 10
  • DOI: 10.1002/2016GL069267

Initial breakdown pulses in intracloud lightning flashes and their relation to terrestrial gamma ray flashes: INITIAL BREAKDOWN PULSES AND TGFs
journal, October 2013

  • Marshall, Thomas; Stolzenburg, Maribeth; Karunarathne, Sumedhe
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 19
  • DOI: 10.1002/jgrd.50866

Constraints to do realistic modeling of the electric field ahead of the tip of a lightning leader: CONSTRAINTS ON THE LEADER ELECTRIC FIELD
journal, August 2017

  • Skeltved, Alexander Broberg; Østgaard, Nikolai; Mezentsev, Andrew
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 15
  • DOI: 10.1002/2016JD026206

A fundamental limit on electric fields in air: A FUNDAMENTAL LIMIT ON ELECTRIC FIELDS
journal, October 2003


The spectroscopy of individual terrestrial gamma-ray flashes: Constraining the source properties: INDIVIDUAL TGF SPECTRA
journal, November 2016

  • Mailyan, B. G.; Briggs, M. S.; Cramer, E. S.
  • Journal of Geophysical Research: Space Physics, Vol. 121, Issue 11
  • DOI: 10.1002/2016JA022702

Terrestrial Gamma-Ray Flashes Observed up to 20 MeV
journal, February 2005


Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders
journal, January 2006

  • Moss, Gregory D.; Pasko, Victor P.; Liu, Ningyu
  • Journal of Geophysical Research, Vol. 111, Issue A2
  • DOI: 10.1029/2005JA011350

THE FERMI GAMMA-RAY BURST MONITOR
journal, August 2009


Source mechanisms of terrestrial gamma-ray flashes
journal, January 2008


Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite: TGF DETECTION BY AGILE
journal, March 2010

  • Marisaldi, M.; Fuschino, F.; Labanti, C.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A3
  • DOI: 10.1029/2009JA014502

Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders: PHOTON BURSTS PRODUCED BY LIGHTNING
journal, December 2015

  • Celestin, Sebastien; Xu, Wei; Pasko, Victor P.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 12
  • DOI: 10.1002/2015JA021410

Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders: TGF SOURCE ALTITUDES
journal, April 2012

  • Xu, Wei; Celestin, Sebastien; Pasko, Victor P.
  • Geophysical Research Letters, Vol. 39, Issue 8
  • DOI: 10.1029/2012GL051351

Soft collisions in relativistic runaway electron avalanches
journal, July 2010


Spatial and energy distributions of X-ray emissions from leaders in natural and rocket triggered lightning: X-RAYS FROM LIGHTNING LEADERS
journal, August 2012

  • Schaal, M. M.; Dwyer, J. R.; Saleh, Z. H.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D15
  • DOI: 10.1029/2012JD017897

A simulation study on the electric field spectral dependence of thunderstorm ground enhancements and gamma ray glows: ELECTRIC FIELD ESTIMATIONS
journal, May 2017

  • Cramer, E. S.; Mailyan, B. G.; Celestin, S.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 9
  • DOI: 10.1002/2016JD026422

High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena
journal, June 2012

  • Dwyer, Joseph R.; Smith, David M.; Cummer, Steven A.
  • Space Science Reviews, Vol. 173, Issue 1-4
  • DOI: 10.1007/s11214-012-9894-0