skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on April 7, 2020

Title: Cluster perturbation theory. II. Excitation energies for a coupled cluster target state

Abstract

In cluster perturbation (CP) theory, we consider a target excitation space relative to a Hartree-Fock state and partition the target excitation space into a parent excitation space and an auxiliary excitation space. The zeroth-order state is in CP theory a coupled cluster (CC) state in the parent excitation space, and the target state is a CC state in the target excitation space. In this paper, we derive CP series for excitation energies in orders of the CC parent-state similarity-transformed fluctuation potential where the zeroth-order term in the series is an excitation energy for the CC parent state response eigenvalue equation and where the series formally converge to an excitation energy for the CC target state response eigenvalue equation. We give explicit expressions for the lowest-order excitation energy corrections. We also report calculations for CP excitation energy series for various parent and target excitation spaces and examine how well the lower-order corrections can reproduce the total excitation energies. Considering the fast local convergence we have observed for the CP excitation energy series, it becomes computationally attractive to use low-order corrections in CP series to obtain excitation energies of CC target state quality. For the CPS(D-n) series, the first-order correction vanishes, themore » second-order correction becomes the CIS(D) model, and for the CPS(D-3) model, our calculations suggest that excitation energies of CCSD quality are obtained. The numerical results also suggest that a similar behavior can be seen for the low-order excitation energy corrections for CP series where the parent state contains more than a singles excitation space, e.g., for the CPSD(T) model. Finally, we therefore expect the low-order excitation energy corrections in CP series soon to become state-of-the-art models for determining excitation energies of CC target state quality.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2]
  1. Auburn Univ., AL (United States)
  2. Aarhus Univ. (Denmark)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1565761
Alternate Identifier(s):
OSTI ID: 1505016
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 150; Journal Issue: 13; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chemistry; physics

Citation Formats

Pawłowski, Filip, Olsen, Jeppe, and Jørgensen, Poul. Cluster perturbation theory. II. Excitation energies for a coupled cluster target state. United States: N. p., 2019. Web. doi:10.1063/1.5053167.
Pawłowski, Filip, Olsen, Jeppe, & Jørgensen, Poul. Cluster perturbation theory. II. Excitation energies for a coupled cluster target state. United States. doi:10.1063/1.5053167.
Pawłowski, Filip, Olsen, Jeppe, and Jørgensen, Poul. Sun . "Cluster perturbation theory. II. Excitation energies for a coupled cluster target state". United States. doi:10.1063/1.5053167.
@article{osti_1565761,
title = {Cluster perturbation theory. II. Excitation energies for a coupled cluster target state},
author = {Pawłowski, Filip and Olsen, Jeppe and Jørgensen, Poul},
abstractNote = {In cluster perturbation (CP) theory, we consider a target excitation space relative to a Hartree-Fock state and partition the target excitation space into a parent excitation space and an auxiliary excitation space. The zeroth-order state is in CP theory a coupled cluster (CC) state in the parent excitation space, and the target state is a CC state in the target excitation space. In this paper, we derive CP series for excitation energies in orders of the CC parent-state similarity-transformed fluctuation potential where the zeroth-order term in the series is an excitation energy for the CC parent state response eigenvalue equation and where the series formally converge to an excitation energy for the CC target state response eigenvalue equation. We give explicit expressions for the lowest-order excitation energy corrections. We also report calculations for CP excitation energy series for various parent and target excitation spaces and examine how well the lower-order corrections can reproduce the total excitation energies. Considering the fast local convergence we have observed for the CP excitation energy series, it becomes computationally attractive to use low-order corrections in CP series to obtain excitation energies of CC target state quality. For the CPS(D-n) series, the first-order correction vanishes, the second-order correction becomes the CIS(D) model, and for the CPS(D-3) model, our calculations suggest that excitation energies of CCSD quality are obtained. The numerical results also suggest that a similar behavior can be seen for the low-order excitation energy corrections for CP series where the parent state contains more than a singles excitation space, e.g., for the CPSD(T) model. Finally, we therefore expect the low-order excitation energy corrections in CP series soon to become state-of-the-art models for determining excitation energies of CC target state quality.},
doi = {10.1063/1.5053167},
journal = {Journal of Chemical Physics},
number = 13,
volume = 150,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on April 7, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The full CCSDT model for molecular electronic structure
journal, June 1987

  • Noga, Jozef; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 86, Issue 12
  • DOI: 10.1063/1.452353

Erratum: The full CCSDT model for molecular electronic structure [J. Chem. Phys. 8 6 , 7041 (1987)]
journal, September 1988

  • Noga, J.; Bartlett, R. J.
  • The Journal of Chemical Physics, Vol. 89, Issue 5
  • DOI: 10.1063/1.455742

Coupled cluster methods including triple excitations for excited states of radicals
journal, February 2005

  • Smith, Christopher E.; King, Rollin A.; Crawford, T. Daniel
  • The Journal of Chemical Physics, Vol. 122, Issue 5
  • DOI: 10.1063/1.1835953

Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH + , CO, and H 2 O
journal, September 1990

  • Koch, Henrik; Jensen, Hans Jo/rgen Aa.; Jo/rgensen, Poul
  • The Journal of Chemical Physics, Vol. 93, Issue 5
  • DOI: 10.1063/1.458815

Coupled cluster response functions
journal, September 1990

  • Koch, Henrik; Jo/rgensen, Poul
  • The Journal of Chemical Physics, Vol. 93, Issue 5
  • DOI: 10.1063/1.458814

Coupled-cluster theory for excited electronic states: The full equation-of-motion coupled-cluster single, double, and triple excitation method
journal, November 2001

  • Kucharski, Stanisław A.; Włoch, Marta; Musiał, Monika
  • The Journal of Chemical Physics, Vol. 115, Issue 18
  • DOI: 10.1063/1.1416173

Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies
journal, July 1996

  • Christiansen, Ove; Koch, Henrik; Jo/rgensen, Poul
  • The Journal of Chemical Physics, Vol. 105, Issue 4
  • DOI: 10.1063/1.472007

The initial implementation and applications of a general active space coupled cluster method
journal, November 2000

  • Olsen, Jeppe
  • The Journal of Chemical Physics, Vol. 113, Issue 17
  • DOI: 10.1063/1.1290005

A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples
journal, February 1982

  • Purvis, George D.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 76, Issue 4
  • DOI: 10.1063/1.443164

Electron excitation energies using a consistent third-order propagator approach: Comparison with full configuration interaction and coupled cluster results
journal, October 2002

  • Trofimov, A. B.; Stelter, G.; Schirmer, J.
  • The Journal of Chemical Physics, Vol. 117, Issue 14
  • DOI: 10.1063/1.1504708

The active-space equation-of-motion coupled-cluster methods for excited electronic states: Full EOMCCSDt
journal, July 2001

  • Kowalski, Karol; Piecuch, Piotr
  • The Journal of Chemical Physics, Vol. 115, Issue 2
  • DOI: 10.1063/1.1378323

An analysis and implementation of a general coupled cluster approach to excitation energies with application to the B2 molecule
journal, July 2001

  • Hald, Kasper; Jørgensen, Poul; Olsen, Jeppe
  • The Journal of Chemical Physics, Vol. 115, Issue 2
  • DOI: 10.1063/1.1379332

Benchmarking Coupled Cluster Methods on Valence Singlet Excited States
journal, July 2014

  • Kánnár, Dániel; Szalay, Péter G.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 9
  • DOI: 10.1021/ct500495n

Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3
journal, April 2008

  • Schreiber, Marko; Silva-Junior, Mario R.; Sauer, Stephan P. A.
  • The Journal of Chemical Physics, Vol. 128, Issue 13
  • DOI: 10.1063/1.2889385

Fully optimized contracted Gaussian basis sets for atoms Li to Kr
journal, August 1992

  • Schäfer, Ansgar; Horn, Hans; Ahlrichs, Reinhart
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463096

Møller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms: Møller-Plesset perturbation theory
journal, May 2011

  • Cremer, Dieter
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 1, Issue 4
  • DOI: 10.1002/wcms.58

Cluster perturbation theory. IV. Convergence of cluster perturbation series for energies and molecular properties
journal, April 2019

  • Pawłowski, Filip; Olsen, Jeppe; Jørgensen, Poul
  • The Journal of Chemical Physics, Vol. 150, Issue 13
  • DOI: 10.1063/1.5053622

Cluster perturbation theory. III. Perturbation series for coupled cluster singles and doubles excitation energies
journal, April 2019

  • Baudin, Pablo; Pawłowski, Filip; Bykov, Dmytro
  • The Journal of Chemical Physics, Vol. 150, Issue 13
  • DOI: 10.1063/1.5046935

On the convergence of perturbative coupled cluster triples expansions: Error cancellations in the CCSD(T) model and the importance of amplitude relaxation
journal, January 2015

  • Eriksen, Janus J.; Jørgensen, Poul; Gauss, Jürgen
  • The Journal of Chemical Physics, Vol. 142, Issue 1
  • DOI: 10.1063/1.4904754

The CC3 model: An iterative coupled cluster approach including connected triples
journal, February 1997

  • Koch, Henrik; Christiansen, Ove; Jo/rgensen, Poul
  • The Journal of Chemical Physics, Vol. 106, Issue 5
  • DOI: 10.1063/1.473322

Simplified methods for equation-of-motion coupled-cluster excited state calculations
journal, January 1996


A new implementation of the full CCSDT model for molecular electronic structure
journal, November 1988


Molecular response properties in equation of motion coupled cluster theory: A time-dependent perspective
journal, January 2016

  • Coriani, Sonia; Pawłowski, Filip; Olsen, Jeppe
  • The Journal of Chemical Physics, Vol. 144, Issue 2
  • DOI: 10.1063/1.4939183

Gradients for the partitioned equation-of-motion coupled-cluster method
journal, January 1999

  • Gwaltney, Steven R.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 110, Issue 1
  • DOI: 10.1063/1.478085

Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene
journal, March 2000

  • Bak, Keld L.; Koch, Henrik; Oddershede, Jens
  • The Journal of Chemical Physics, Vol. 112, Issue 9
  • DOI: 10.1063/1.480963

Divergence in Møller–Plesset theory: A simple explanation based on a two-state model
journal, June 2000

  • Olsen, Jeppe; Jørgensen, Poul; Helgaker, Trygve
  • The Journal of Chemical Physics, Vol. 112, Issue 22
  • DOI: 10.1063/1.481611

Basis set effects on coupled cluster benchmarks of electronically excited states: CC3, CCSDR(3) and CC2
journal, February 2010

  • Silva-Junior, Mario R.; Sauer, Stephan P. A.; Schreiber, Marko
  • Molecular Physics, Vol. 108, Issue 3-4
  • DOI: 10.1080/00268970903549047

Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3
journal, February 2009

  • Sauer, Stephan P. A.; Schreiber, Marko; Silva-Junior, Mario R.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 3
  • DOI: 10.1021/ct800256j

A new approach to approximate equation-of-motion coupled cluster with triple excitations
journal, September 2016

  • Matthews, Devin A.; Stanton, John F.
  • The Journal of Chemical Physics, Vol. 145, Issue 12
  • DOI: 10.1063/1.4962910

The second-order approximate coupled cluster singles and doubles model CC2
journal, September 1995


Computing coupled-cluster wave functions with arbitrary excitations
journal, July 2000

  • Kállay, Mihály; Surján, Péter R.
  • The Journal of Chemical Physics, Vol. 113, Issue 4
  • DOI: 10.1063/1.481925

Perturbative treatment of the similarity transformed Hamiltonian in equation‐of‐motion coupled‐cluster approximations
journal, July 1995

  • Stanton, John F.; Gauss, Jürgen
  • The Journal of Chemical Physics, Vol. 103, Issue 3
  • DOI: 10.1063/1.469817

Transition moments and dynamic polarizabilities in a second order polarization propagator approach
journal, December 1980

  • Nielsen, Egon S.; Jo/rgensen, Poul; Oddershede, Jens
  • The Journal of Chemical Physics, Vol. 73, Issue 12
  • DOI: 10.1063/1.440119

The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states
journal, September 2014

  • Dreuw, Andreas; Wormit, Michael
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 5, Issue 1
  • DOI: 10.1002/wcms.1206

Assessment of low-scaling approximations to the equation of motion coupled-cluster singles and doubles equations
journal, October 2014

  • Goings, Joshua J.; Caricato, Marco; Frisch, Michael J.
  • The Journal of Chemical Physics, Vol. 141, Issue 16
  • DOI: 10.1063/1.4898709

Calculation of properties with the coupled-cluster method
journal, January 1977

  • Monkhorst, Hendrik J.
  • International Journal of Quantum Chemistry, Vol. 12, Issue S11
  • DOI: 10.1002/qua.560120850

A consistent third-order propagator method for electronic excitation
journal, December 1999

  • Trofimov, A. B.; Stelter, G.; Schirmer, J.
  • The Journal of Chemical Physics, Vol. 111, Issue 22
  • DOI: 10.1063/1.480352

Cluster perturbation theory. I. Theoretical foundation for a coupled cluster target state and ground-state energies
journal, April 2019

  • Pawłowski, Filip; Olsen, Jeppe; Jørgensen, Poul
  • The Journal of Chemical Physics, Vol. 150, Issue 13
  • DOI: 10.1063/1.5004037

Calculation of excited-state properties using general coupled-cluster and configuration-interaction models
journal, November 2004

  • Kállay, Mihály; Gauss, Jürgen
  • The Journal of Chemical Physics, Vol. 121, Issue 19
  • DOI: 10.1063/1.1805494

A Lagrangian framework for deriving triples and quadruples corrections to the CCSD energy
journal, February 2014

  • Eriksen, Janus J.; Kristensen, Kasper; Kjærgaard, Thomas
  • The Journal of Chemical Physics, Vol. 140, Issue 6
  • DOI: 10.1063/1.4862501

Benchmarking for Perturbative Triple-Excitations in EE-EOM-CC Methods
journal, March 2013

  • Watson, Thomas J.; Lotrich, Victor F.; Szalay, Peter G.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 12
  • DOI: 10.1021/jp308634q

Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets
journal, December 2016

  • Kánnár, Dániel; Tajti, Attila; Szalay, Péter G.
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 1
  • DOI: 10.1021/acs.jctc.6b00875

Response functions in the CC3 iterative triple excitation model
journal, November 1995

  • Christiansen, Ove; Koch, Henrik; Jo/rgensen, Poul
  • The Journal of Chemical Physics, Vol. 103, Issue 17
  • DOI: 10.1063/1.470315

Quadratic Response Functions in a Second-Order Polarization Propagator Framework
journal, December 2005

  • Olsen, Jeppe; Jørgensen, Poul; Helgaker, Trygve
  • The Journal of Physical Chemistry A, Vol. 109, Issue 50
  • DOI: 10.1021/jp054207w

A doubles correction to electronic excited states from configuration interaction in the space of single substitutions
journal, March 1994


An efficient polarization propagator approach to valence electron excitation spectra
journal, June 1995

  • Trofimov, A. B.; Schirmer, J.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 28, Issue 12
  • DOI: 10.1088/0953-4075/28/12/003

A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation
journal, February 2016

  • Kristensen, Kasper; Eriksen, Janus J.; Matthews, Devin A.
  • The Journal of Chemical Physics, Vol. 144, Issue 6
  • DOI: 10.1063/1.4941605

Excited-state potential energy curves of CH+: a comparison of the EOMCCSDt and full EOMCCSDT results
journal, October 2001


The third-order algebraic diagrammatic construction method (ADC(3)) for the polarization propagator for closed-shell molecules: Efficient implementation and benchmarking
journal, August 2014

  • Harbach, Philipp H. P.; Wormit, Michael; Dreuw, Andreas
  • The Journal of Chemical Physics, Vol. 141, Issue 6
  • DOI: 10.1063/1.4892418