DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Warm summers during the Younger Dryas cold reversal

Abstract

The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.

Authors:
ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [2];  [5];  [6];  [7];  [8];  [9]
  1. Stockholm Univ. (Sweden); KTH Royal Inst. of Technology, Stockholm (Sweden)
  2. Univ. of Helsinki (Finland)
  3. Stockholm Univ. (Sweden); Univ. of Cambridge (United Kingdom); Columbia Univ., New York, NY (United States)
  4. Memorial Univ. of Newfoundland, St. John’s, NL (Canada)
  5. Stockholm Univ. (Sweden); Lund Univ. (Sweden)
  6. Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm (Sweden)
  7. KTH Royal Inst. of Technology, Stockholm (Sweden)
  8. Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm (Sweden); Stockholm Univ. (Sweden)
  9. Stockholm Univ. (Sweden)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1565676
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Schenk, Frederik, Väliranta, Minna, Muschitiello, Francesco, Tarasov, Lev, Heikkilä, Maija, Björck, Svante, Brandefelt, Jenny, Johansson, Arne V., Näslund, Jens-Ove, and Wohlfarth, Barbara. Warm summers during the Younger Dryas cold reversal. United States: N. p., 2018. Web. doi:10.1038/s41467-018-04071-5.
Schenk, Frederik, Väliranta, Minna, Muschitiello, Francesco, Tarasov, Lev, Heikkilä, Maija, Björck, Svante, Brandefelt, Jenny, Johansson, Arne V., Näslund, Jens-Ove, & Wohlfarth, Barbara. Warm summers during the Younger Dryas cold reversal. United States. https://doi.org/10.1038/s41467-018-04071-5
Schenk, Frederik, Väliranta, Minna, Muschitiello, Francesco, Tarasov, Lev, Heikkilä, Maija, Björck, Svante, Brandefelt, Jenny, Johansson, Arne V., Näslund, Jens-Ove, and Wohlfarth, Barbara. Tue . "Warm summers during the Younger Dryas cold reversal". United States. https://doi.org/10.1038/s41467-018-04071-5. https://www.osti.gov/servlets/purl/1565676.
@article{osti_1565676,
title = {Warm summers during the Younger Dryas cold reversal},
author = {Schenk, Frederik and Väliranta, Minna and Muschitiello, Francesco and Tarasov, Lev and Heikkilä, Maija and Björck, Svante and Brandefelt, Jenny and Johansson, Arne V. and Näslund, Jens-Ove and Wohlfarth, Barbara},
abstractNote = {The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.},
doi = {10.1038/s41467-018-04071-5},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {Tue Apr 24 00:00:00 EDT 2018},
month = {Tue Apr 24 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 63 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Benthic ostracode δ13C as sensor for early Holocene establishment of modern circulation patterns in Central Europe
journal, April 2013


Evaluation of climate models using palaeoclimatic data
journal, March 2012

  • Braconnot, Pascale; Harrison, Sandy P.; Kageyama, Masa
  • Nature Climate Change, Vol. 2, Issue 6
  • DOI: 10.1038/nclimate1456

Closing the sea level budget at the Last Glacial Maximum: Fig. 1.
journal, November 2014

  • Clark, Peter U.; Tarasov, Lev
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 45
  • DOI: 10.1073/pnas.1418970111

A coupled climate model simulation of Marine Isotope Stage 3 stadial climate
journal, January 2011

  • Brandefelt, J.; Kjellström, E.; Näslund, J. -O.
  • Climate of the Past, Vol. 7, Issue 2
  • DOI: 10.5194/cp-7-649-2011

Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation
journal, February 2013

  • He, Feng; Shakun, Jeremy D.; Clark, Peter U.
  • Nature, Vol. 494, Issue 7435
  • DOI: 10.1038/nature11822

Future uses of pollen analysis must include plant macrofossils
journal, January 2000


Greenland temperature response to climate forcing during the last deglaciation
journal, September 2014


High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years
journal, August 2008


Synchronized TerrestrialAtmospheric Deglacial Records Around the North Atlantic
journal, November 1996


Younger Dryas cooling and the Greenland climate response to CO2
journal, June 2012

  • Liu, Z.; Carlson, A. E.; He, F.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 28
  • DOI: 10.1073/pnas.1202183109

Strategies of reproduction, dispersion, and competition in river plants: A review
journal, March 1996


Greenland glacial history and local geodynamic consequences
journal, July 2002


Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features
journal, January 2007

  • Braconnot, P.; Otto-Bliesner, B.; Harrison, S.
  • Climate of the Past, Vol. 3, Issue 2
  • DOI: 10.5194/cp-3-261-2007

Younger Dryas deglaciation of Scotland driven by warming summers
journal, April 2014

  • Bromley, G. R. M.; Putnam, A. E.; Rademaker, K. M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 17
  • DOI: 10.1073/pnas.1321122111

Mean July Temperatures during the Younger Dryas in Northwestern and Central Europe as Inferred from Climate Indicator Plant Species
journal, March 1999

  • Isarin, René F. B.; Bohncke, Sjoerd J. P.
  • Quaternary Research, Vol. 51, Issue 2
  • DOI: 10.1006/qres.1998.2023

The European 2015 drought from a climatological perspective
journal, January 2017

  • Ionita, Monica; Tallaksen, Lena M.; Kingston, Daniel G.
  • Hydrology and Earth System Sciences, Vol. 21, Issue 3
  • DOI: 10.5194/hess-21-1397-2017

Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years
journal, February 2008

  • Joos, F.; Spahni, R.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 5
  • DOI: 10.1073/pnas.0707386105

Reduced solar activity as a trigger for the start of the Younger Dryas?
journal, June 2000


Constraint on the penultimate glacial maximum Northern Hemisphere ice topography (≈140 kyrs BP)
journal, April 2016


The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1
journal, October 2015

  • Hughes, Anna L. C.; Gyllencreutz, Richard; Lohne, Øystein S.
  • Boreas, Vol. 45, Issue 1
  • DOI: 10.1111/bor.12142

Rapid transitions of the ocean's deep circulation induced by changes in surface water fluxes
journal, June 1991

  • Stocker, Thomas F.; Wright, Daniel G.
  • Nature, Vol. 351, Issue 6329
  • DOI: 10.1038/351729a0

Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle
journal, November 1995


Transient Simulation of Last Deglaciation with a New Mechanism for Bolling-Allerod Warming
journal, July 2009


A new Greenland ice core chronology for the last glacial termination
journal, January 2006

  • Rasmussen, S. O.; Andersen, K. K.; Svensson, A. M.
  • Journal of Geophysical Research, Vol. 111, Issue D6
  • DOI: 10.1029/2005JD006079

Paleocean circulation during the Last Deglaciation: A bipolar seesaw?
journal, April 1998


Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains
journal, February 1987

  • Atkinson, T. C.; Briffa, K. R.; Coope, G. R.
  • Nature, Vol. 325, Issue 6105
  • DOI: 10.1038/325587a0

Biogeochemical and micro-facial fingerprints of ecosystem response to rapid Late Glacial climatic changes in varved sediments of Meerfelder Maar (Germany)
journal, August 2004


Multiple causes of the Younger Dryas cold period
journal, October 2015

  • Renssen, Hans; Mairesse, Aurélien; Goosse, Hugues
  • Nature Geoscience, Vol. 8, Issue 12
  • DOI: 10.1038/ngeo2557

A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling
journal, January 2012

  • Tarasov, Lev; Dyke, Arthur S.; Neal, Radford M.
  • Earth and Planetary Science Letters, Vol. 315-316
  • DOI: 10.1016/j.epsl.2011.09.010

Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes
journal, April 2004

  • McManus, J. F.; Francois, R.; Gherardi, J. -M.
  • Nature, Vol. 428, Issue 6985
  • DOI: 10.1038/nature02494

Abrupt climate change: An alternative view
journal, March 2006


Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave
journal, July 2016

  • Duchez, Aurélie; Frajka-Williams, Eleanor; Josey, Simon A.
  • Environmental Research Letters, Vol. 11, Issue 7
  • DOI: 10.1088/1748-9326/11/7/074004

Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation
journal, March 2006


A data-constrained large ensemble analysis of Antarctic evolution since the Eemian
journal, November 2014


Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation
journal, April 2012

  • Shakun, Jeremy D.; Clark, Peter U.; He, Feng
  • Nature, Vol. 484, Issue 7392
  • DOI: 10.1038/nature10915

The impact of the North Atlantic Ocean on the Younger Dryas climate in northwestern and central Europe
journal, September 1998


The Last Glacial Termination
journal, June 2010


Rapid oceanic and atmospheric changes during the Younger Dryas cold period
journal, February 2009

  • Bakke, Jostein; Lie, Øyvind; Heegaard, Einar
  • Nature Geoscience, Vol. 2, Issue 3
  • DOI: 10.1038/ngeo439

Anomalously mild Younger Dryas summer conditions in southern Greenland
journal, January 2002


Toward understanding nonstationarity in climate and hydrology through tree ring proxy records
journal, March 2015

  • Razavi, Saman; Elshorbagy, Amin; Wheater, Howard
  • Water Resources Research, Vol. 51, Issue 3
  • DOI: 10.1002/2014WR015696

The role of seasonality in abrupt climate change
journal, May 2005


Validation of climate model-inferred regional temperature change for late-glacial Europe
journal, September 2014

  • Heiri, Oliver; Brooks, Stephen J.; Renssen, Hans
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5914

On the ‘Divergence Problem’ in Northern Forests: A review of the tree-ring evidence and possible causes
journal, February 2008


Abrupt glacial climate shifts controlled by ice sheet changes
journal, August 2014

  • Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor
  • Nature, Vol. 512, Issue 7514
  • DOI: 10.1038/nature13592

Quantitative reconstructions in palaeolimnology: new paradigm or sick science?
journal, March 2013


Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas
journal, October 2013

  • Lane, C. S.; Brauer, A.; Blockley, S. P. E.
  • Geology, Vol. 41, Issue 12
  • DOI: 10.1130/G34867.1

Ocean lead at the termination of the Younger Dryas cold spell
journal, April 2013

  • Pearce, Christof; Seidenkrantz, Marit-Solveig; Kuijpers, Antoon
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2686

To what extent did changes in July temperature influence Lateglacial vegetation patterns in NW Europe?
journal, December 2014


Steering of westerly storms over western North America at the Last Glacial Maximum
journal, February 2015

  • Oster, Jessica L.; Ibarra, Daniel E.; Winnick, Matthew J.
  • Nature Geoscience, Vol. 8, Issue 3
  • DOI: 10.1038/ngeo2365

Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings
journal, May 2011


Sensitivity to Glacial Forcing in the CCSM4
journal, March 2013

  • Brady, Esther C.; Otto-Bliesner, Bette L.; Kay, Jennifer E.
  • Journal of Climate, Vol. 26, Issue 6
  • DOI: 10.1175/JCLI-D-11-00416.1

The biogeography of aquatic macrophytes in North America since the Last Glacial Maximum: The biogeography of aquatic macrophytes
journal, June 2003


Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe
journal, January 2014

  • Rach, O.; Brauer, A.; Wilkes, H.
  • Nature Geoscience, Vol. 7, Issue 2
  • DOI: 10.1038/ngeo2053

Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes
journal, April 2006

  • Stouffer, R. J.; Yin, J.; Gregory, J. M.
  • Journal of Climate, Vol. 19, Issue 8
  • DOI: 10.1175/JCLI3689.1

Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe
journal, April 2015

  • Väliranta, M.; Salonen, J. S.; Heikkilä, M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7809

Climatic changes in areas adjacent to the North Atlantic during the last glacial-interglacial transition (14-9 ka BP): A contribution to IGCP-253
journal, June 1994

  • Lowe, J. John; Ammann, B.; Birks, H. H.
  • Journal of Quaternary Science, Vol. 9, Issue 2
  • DOI: 10.1002/jqs.3390090215

Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas
journal, November 2015

  • Muschitiello, Francesco; Pausata, Francesco S. R.; Watson, Jenny E.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9939

Postglacial sea-level change on a rotating Earth
journal, April 1998


Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3: WEAKENING AMOC BY ICE-SHEET RETREAT
journal, September 2014

  • Zhu, Jiang; Liu, Zhengyu; Zhang, Xu
  • Geophysical Research Letters, Vol. 41, Issue 17
  • DOI: 10.1002/2014GL060891

Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions
journal, January 2016

  • Ivanovic, Ruza F.; Gregoire, Lauren J.; Kageyama, Masa
  • Geoscientific Model Development, Vol. 9, Issue 7
  • DOI: 10.5194/gmd-9-2563-2016

Time-transgressive environmental shifts across Northern Europe at the onset of the Younger Dryas
journal, February 2015


The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications
journal, October 2011


Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages
journal, February 2017

  • Samartin, Stéphanie; Heiri, Oliver; Joos, Fortunat
  • Nature Geoscience, Vol. 10, Issue 3
  • DOI: 10.1038/ngeo2891

New estimates of radiative forcing due to well mixed greenhouse gases
journal, July 1998

  • Myhre, Gunnar; Highwood, Eleanor J.; Shine, Keith P.
  • Geophysical Research Letters, Vol. 25, Issue 14
  • DOI: 10.1029/98GL01908

Multiple causes of the Younger Dryas cold period
text, January 2015

  • Valdes, Paul J.; Nisancioglu, Kerim H.; Goosse, Hugues
  • Nature Publishing Group
  • DOI: 10.7892/boris.73647

Biogeochemical and micro-facial fingerprints of ecosystem response to rapid Late Glacial climatic changes in varved sediments of Meerfelder Maar (Germany)
journal, August 2004


Validation of climate model-inferred regional temperature change for late-glacial Europe
text, January 2014

  • Veski, Siim; Samartin, Stéphanie; Lotter, André F.
  • Nature Publishing Group
  • DOI: 10.7892/boris.58725

Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings
text, January 2011

  • Menviel, Laurie; Timmermann, A.; Timm, O. Elison
  • Pergamon
  • DOI: 10.48350/10198

Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages
text, January 2017

  • Brönnimann, Stefan; Renssen, Hans; Joos, Fortunat
  • Nature Publishing Group
  • DOI: 10.7892/boris.95559

Works referencing / citing this record:

Late Pleistocene climate of the northern Iberian Peninsula: New insights from palaeoglaciers at Fuentes Carrionas (Cantabrian Mountains)
journal, May 2019

  • Pellitero, Ramón; Fernández‐Fernández, José M.; Campos, Néstor
  • Journal of Quaternary Science, Vol. 34, Issue 4-5
  • DOI: 10.1002/jqs.3106

Late glacial and early Holocene climate and environmental changes in the eastern Baltic area inferred from sediment C/N ratio
journal, June 2018


Deep-water circulation changes lead North Atlantic climate during deglaciation
journal, March 2019

  • Muschitiello, Francesco; D’Andrea, William J.; Schmittner, Andreas
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-09237-3

Machine-learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data
journal, November 2019


Deglaciation history of Lake Ladoga (northwestern Russia) based on varved sediments
journal, October 2018

  • Gromig, Raphael; Wagner, Bernd; Wennrich, Volker
  • Boreas, Vol. 48, Issue 2
  • DOI: 10.1111/bor.12379

Enhanced surface melting of the Fennoscandian Ice Sheet during periods of North Atlantic cooling
journal, May 2019

  • Boswell, Steven M.; Toucanne, Samuel; Pitel-Roudaut, Mathilde
  • Geology, Vol. 47, Issue 7
  • DOI: 10.1130/g46370.1

Shotgun Environmental DNA, Pollen, and Macrofossil Analysis of Lateglacial Lake Sediments From Southern Sweden
journal, June 2019

  • Parducci, Laura; Alsos, Inger Greve; Unneberg, Per
  • Frontiers in Ecology and Evolution, Vol. 7
  • DOI: 10.3389/fevo.2019.00189

Deep-water circulation changes lead North Atlantic climate during deglaciation.
text, January 2019

  • Muschitiello, Francesco; D'Andrea, William J.; Schmittner, Andreas
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.40301

Enhanced surface melting of the Fennoscandian Ice Sheet during periods of North Atlantic cooling
text, January 2019

  • Boswell, Steven M.; Toucanne, Samuel; Pitel-Roudaut, Mathilde
  • Columbia University
  • DOI: 10.7916/d8-7b91-zv22