DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide–expand–consolidate RI-MP2 model

Abstract

The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation.

Authors:
ORCiD logo [1];  [1];  [2];  [1]; ORCiD logo [1]
  1. Aarhus Univ. (Denmark). qLEAP Center for Theoretical Chemistry, Dept. of Chemistry
  2. Univ. of Oslo (Norway). Centre for Theoretical and Computational Chemistry, Dept. of Chemistry
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1565468
Alternate Identifier(s):
OSTI ID: 1421154
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 144; Journal Issue: 5; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Physics

Citation Formats

Baudin, Pablo, Ettenhuber, Patrick, Reine, Simen, Kristensen, Kasper, and Kjærgaard, Thomas. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide–expand–consolidate RI-MP2 model. United States: N. p., 2016. Web. doi:10.1063/1.4940732.
Baudin, Pablo, Ettenhuber, Patrick, Reine, Simen, Kristensen, Kasper, & Kjærgaard, Thomas. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide–expand–consolidate RI-MP2 model. United States. https://doi.org/10.1063/1.4940732
Baudin, Pablo, Ettenhuber, Patrick, Reine, Simen, Kristensen, Kasper, and Kjærgaard, Thomas. Mon . "Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide–expand–consolidate RI-MP2 model". United States. https://doi.org/10.1063/1.4940732. https://www.osti.gov/servlets/purl/1565468.
@article{osti_1565468,
title = {Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide–expand–consolidate RI-MP2 model},
author = {Baudin, Pablo and Ettenhuber, Patrick and Reine, Simen and Kristensen, Kasper and Kjærgaard, Thomas},
abstractNote = {The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC calculation, the full molecular correlated calculation is replaced by a set of independent fragment calculations each using a subset of the total orbital space. The number of independent fragment calculations scales linearly with the system size, rendering the method linear-scaling and massively parallel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the RI approximation is utilized in each fragment calculation. The individual fragment calculations scale with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional RI-MP2 implementation.},
doi = {10.1063/1.4940732},
journal = {Journal of Chemical Physics},
number = 5,
volume = 144,
place = {United States},
year = {Mon Feb 01 00:00:00 EST 2016},
month = {Mon Feb 01 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reduced scaling in electronic structure calculations using Cholesky decompositions
journal, June 2003

  • Koch, Henrik; Sánchez de Merás, Alfredo; Pedersen, Thomas Bondo
  • The Journal of Chemical Physics, Vol. 118, Issue 21
  • DOI: 10.1063/1.1578621

A perspective on the localizability of Hartree–Fock orbitals
journal, November 2013

  • Høyvik, Ida-Marie; Kristensen, Kasper; Kjærgaard, Thomas
  • Theoretical Chemistry Accounts, Vol. 133, Issue 1
  • DOI: 10.1007/s00214-013-1417-x

The role of databases in support of computational chemistry calculations
journal, October 1996


Maximum locality in occupied and virtual orbital spaces using a least-change strategy
journal, September 2009

  • Ziółkowski, Marcin; Jansík, Branislav; Jørgensen, Poul
  • The Journal of Chemical Physics, Vol. 131, Issue 12
  • DOI: 10.1063/1.3230604

Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory
journal, March 2012

  • Kurashige, Yuki; Yang, Jun; Chan, Garnet K. -L.
  • The Journal of Chemical Physics, Vol. 136, Issue 12
  • DOI: 10.1063/1.3696962

Fully Automated Incremental Evaluation of MP2 and CCSD(T) Energies: Application to Water Clusters
journal, January 2009

  • Friedrich, Joachim; Dolg, Michael
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 2
  • DOI: 10.1021/ct800355e

The divide–expand–consolidate MP2 scheme goes massively parallel
journal, April 2013


Molecular tailoring approach in conjunction with MP2 and Ri-MP2 codes: A comparison with fragment molecular orbital method
journal, January 2010

  • Rahalkar, Anuja P.; Katouda, Michio; Gadre, Shridhar R.
  • Journal of Computational Chemistry
  • DOI: 10.1002/jcc.21533

Molecular Electronic-Structure Theory
book, August 2000


On some approximations in applications of X α theory
journal, October 1979

  • Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R.
  • The Journal of Chemical Physics, Vol. 71, Issue 8
  • DOI: 10.1063/1.438728

Efficient distance-including integral screening in linear-scaling Møller-Plesset perturbation theory
journal, January 2013

  • Maurer, Simon A.; Lambrecht, Daniel S.; Kussmann, Jörg
  • The Journal of Chemical Physics, Vol. 138, Issue 1
  • DOI: 10.1063/1.4770502

Local CC2 electronic excitation energies for large molecules with density fitting
journal, September 2006

  • Kats, Danylo; Korona, Tatiana; Schütz, Martin
  • The Journal of Chemical Physics, Vol. 125, Issue 10
  • DOI: 10.1063/1.2339021

Pipek-Mezey localization of occupied and virtual orbitals
journal, April 2013

  • H⊘yvik, Ida-Marie; Jansik, Branislav; J⊘rgensen, Poul
  • Journal of Computational Chemistry, Vol. 34, Issue 17
  • DOI: 10.1002/jcc.23281

Analytical energy gradients for local second-order Møller–Plesset perturbation theory using density fitting approximations
journal, July 2004

  • Schütz, Martin; Werner, Hans-Joachim; Lindh, Roland
  • The Journal of Chemical Physics, Vol. 121, Issue 2
  • DOI: 10.1063/1.1760747

MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme
journal, January 2012

  • Kristensen, Kasper; Høyvik, Ida-Marie; Jansik, Branislav
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 45
  • DOI: 10.1039/c2cp41958k

Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations
journal, May 2003

  • Werner, Hans-Joachim; Manby, Frederick R.; Knowles, Peter J.
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564816

Basis Set Exchange:  A Community Database for Computational Sciences
journal, March 2007

  • Schuchardt, Karen L.; Didier, Brett T.; Elsethagen, Todd
  • Journal of Chemical Information and Modeling, Vol. 47, Issue 3
  • DOI: 10.1021/ci600510j

Electrostatic Potential of Insulin: Exploring the Limitations of Density Functional Theory and Force Field Methods
journal, August 2013

  • Jakobsen, Sofie; Kristensen, Kasper; Jensen, Frank
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 9
  • DOI: 10.1021/ct400452f

The Dalton quantum chemistry program system: The Dalton program
journal, September 2013

  • Aidas, Kestutis; Angeli, Celestino; Bak, Keld L.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 3
  • DOI: 10.1002/wcms.1172

Coulombic potential energy integrals and approximations
journal, May 1973

  • Whitten, J. L.
  • The Journal of Chemical Physics, Vol. 58, Issue 10
  • DOI: 10.1063/1.1679012

Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme
journal, September 2012

  • Kristensen, Kasper; Jørgensen, Poul; Jansík, Branislav
  • The Journal of Chemical Physics, Vol. 137, Issue 11
  • DOI: 10.1063/1.4752432

Atomic Cholesky decompositions: A route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency
journal, April 2009

  • Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo
  • The Journal of Chemical Physics, Vol. 130, Issue 15
  • DOI: 10.1063/1.3116784

Resolution of the identity atomic orbital Laplace transformed second order Møller–Plesset theory for nonconducting periodic systems
journal, January 2008

  • Izmaylov, Artur F.; Scuseria, Gustavo E.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 23
  • DOI: 10.1039/b803274m

On first-row diatomic molecules and local density models
journal, January 1979

  • Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R.
  • The Journal of Chemical Physics, Vol. 71, Issue 12
  • DOI: 10.1063/1.438313

Trust Region Minimization of Orbital Localization Functions
journal, August 2012

  • Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 9
  • DOI: 10.1021/ct300473g

RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method
journal, January 2012

  • Ishikawa, Takeshi; Kuwata, Kazuo
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz201697x

Fragment molecular orbital calculation using the RI-MP2 method
journal, May 2009


Unbiased auxiliary basis sets for accurate two-electron integral approximations
journal, September 2007

  • Aquilante, Francesco; Lindh, Roland; Bondo Pedersen, Thomas
  • The Journal of Chemical Physics, Vol. 127, Issue 11
  • DOI: 10.1063/1.2777146

Linear-scaling atomic orbital-based second-order Møller–Plesset perturbation theory by rigorous integral screening criteria
journal, February 2009

  • Doser, Bernd; Lambrecht, Daniel S.; Kussmann, Jörg
  • The Journal of Chemical Physics, Vol. 130, Issue 6
  • DOI: 10.1063/1.3072903

The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development
journal, October 1997

  • Kendall, Rick A.; Früchtl, Herbert A.
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 97, Issue 1-4
  • DOI: 10.1007/s002140050249

Orbital localization using fourth central moment minimization
journal, December 2012

  • Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul
  • The Journal of Chemical Physics, Vol. 137, Issue 22
  • DOI: 10.1063/1.4769866

Møller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms: Møller-Plesset perturbation theory
journal, May 2011

  • Cremer, Dieter
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 1, Issue 4
  • DOI: 10.1002/wcms.58

Accelerating Resolution-of-the-Identity Second-Order Møller−Plesset Quantum Chemistry Calculations with Graphical Processing Units
journal, March 2008

  • Vogt, Leslie; Olivares-Amaya, Roberto; Kermes, Sean
  • The Journal of Physical Chemistry A, Vol. 112, Issue 10
  • DOI: 10.1021/jp0776762

A systematic way for the cost reduction of density fitting methods
journal, December 2014

  • Kállay, Mihály
  • The Journal of Chemical Physics, Vol. 141, Issue 24
  • DOI: 10.1063/1.4905005

Linear scaling coupled cluster method with correlation energy based error control
journal, July 2010

  • Ziółkowski, Marcin; Jansík, Branislav; Kjærgaard, Thomas
  • The Journal of Chemical Physics, Vol. 133, Issue 1
  • DOI: 10.1063/1.3456535

Approximate ab initio energies by systematic molecular fragmentation
journal, April 2005

  • Deev, Vitali; Collins, Michael A.
  • The Journal of Chemical Physics, Vol. 122, Issue 15
  • DOI: 10.1063/1.1879792

Improved Cluster-in-Molecule Local Correlation Approach for Electron Correlation Calculation of Large Systems
journal, June 2014

  • Guo, Yang; Li, Wei; Li, Shuhua
  • The Journal of Physical Chemistry A, Vol. 118, Issue 39
  • DOI: 10.1021/jp501976x

MPI/OpenMP Hybrid Parallel Algorithm of Resolution of Identity Second-Order Møller–Plesset Perturbation Calculation for Massively Parallel Multicore Supercomputers
journal, November 2013

  • Katouda, Michio; Nakajima, Takahito
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 12
  • DOI: 10.1021/ct400795v

Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems
journal, February 1999

  • Ayala, Philippe Y.; Scuseria, Gustavo E.
  • The Journal of Chemical Physics, Vol. 110, Issue 8
  • DOI: 10.1063/1.478256

Explicitly correlated second-order perturbation theory using density fitting and local approximations
journal, February 2006

  • Werner, Hans-Joachim; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 124, Issue 5
  • DOI: 10.1063/1.2150817

Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
journal, February 2002

  • Weigend, Florian; Köhn, Andreas; Hättig, Christof
  • The Journal of Chemical Physics, Vol. 116, Issue 8
  • DOI: 10.1063/1.1445115

Efficient parallel algorithm of second-order Møller-Plesset perturbation theory with resolution-of-identity approximation (RI-MP2)
journal, January 2009

  • Katouda, Michio; Nagase, Shigeru
  • International Journal of Quantum Chemistry, Vol. 109, Issue 10
  • DOI: 10.1002/qua.22068

Localized Atomic and Molecular Orbitals
journal, July 1963


Communication: A reduced scaling J-engine based reformulation of SOS-MP2 using graphics processing units
journal, August 2014

  • Maurer, S. A.; Kussmann, J.; Ochsenfeld, C.
  • The Journal of Chemical Physics, Vol. 141, Issue 5
  • DOI: 10.1063/1.4891797

M�ller-Plesset (MP2) perturbation theory for large molecules
journal, November 1993


Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method
journal, August 2007

  • Kobayashi, Masato; Imamura, Yutaka; Nakai, Hiromi
  • The Journal of Chemical Physics, Vol. 127, Issue 7
  • DOI: 10.1063/1.2761878

Large scale FMO-MP2 calculations on a massively parallel-vector computer
journal, May 2008


An approximate second-order Møller–Plesset perturbation approach for large molecular calculations
journal, August 2006


Local and density fitting approximations within the short-range/long-range hybrid scheme: application to large non-bonded complexes
journal, January 2008

  • Goll, Erich; Leininger, Thierry; Manby, Frederick R.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 23
  • DOI: 10.1039/b804672g

Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers
journal, March 1996


Localized Atomic and Molecular Orbitals. II
journal, November 1965

  • Edmiston, Clyde; Ruedenberg, Klaus
  • The Journal of Chemical Physics, Vol. 43, Issue 10
  • DOI: 10.1063/1.1701520

Distributed memory parallel implementation of energies and gradients for second-order Møller–Plesset perturbation theory with the resolution-of-the-identity approximation
journal, January 2006

  • Hättig, Christof; Hellweg, Arnim; Köhn, Andreas
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 10
  • DOI: 10.1039/b515355g

On the use of the Laplace transform in local correlation methods
journal, January 2008

  • Kats, Danylo; Usvyat, Denis; Schütz, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 23
  • DOI: 10.1039/b802993h

A fast intrinsic localization procedure applicable for a b i n i t i o and semiempirical linear combination of atomic orbital wave functions
journal, May 1989

  • Pipek, János; Mezey, Paul G.
  • The Journal of Chemical Physics, Vol. 90, Issue 9
  • DOI: 10.1063/1.456588

A Linear-Scaling MP2 Method for Large Molecules by Rigorous Integral-Screening Criteria
journal, April 2010

  • Doser, Bernd; Zienau, Jan; Clin, Lucien
  • Zeitschrift für Physikalische Chemie, Vol. 224, Issue 3-4
  • DOI: 10.1524/zpch.2010.6113

Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide–Expand–Consolidate CCSD(T) Model
journal, June 2015

  • Eriksen, Janus J.; Baudin, Pablo; Ettenhuber, Patrick
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jctc.5b00086

Ab initio calculations on large molecules: The multiplicative integral approximation
journal, September 1988


Local orbitals by minimizing powers of the orbital variance
journal, May 2011

  • Jansík, Branislav; Høst, Stinne; Kristensen, Kasper
  • The Journal of Chemical Physics, Vol. 134, Issue 19
  • DOI: 10.1063/1.3590361

A tight distance-dependent estimator for screening three-center Coulomb integrals over Gaussian basis functions
journal, April 2015

  • Hollman, David S.; Schaefer, Henry F.; Valeev, Edward F.
  • The Journal of Chemical Physics, Vol. 142, Issue 15
  • DOI: 10.1063/1.4917519

An efficient localization procedure for large systems using a sequential transformation strategy
journal, December 2014

  • Zhang, Chenyang; Li, Shuhua
  • The Journal of Chemical Physics, Vol. 141, Issue 24
  • DOI: 10.1063/1.4904292

Density fitting in second-order linear-r12 Møller–Plesset perturbation theory
journal, September 2003

  • Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 119, Issue 9
  • DOI: 10.1063/1.1594713

A Locality Analysis of the Divide–Expand–Consolidate Coupled Cluster Amplitude Equations
journal, May 2011

  • Kristensen, Kasper; Ziółkowski, Marcin; Jansík, Branislav
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 6
  • DOI: 10.1021/ct200114k

Note on an Approximation Treatment for Many-Electron Systems
journal, October 1934


RI-MP2: first derivatives and global consistency
journal, October 1997

  • Weigend, Florian; Häser, Marco
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 97, Issue 1-4
  • DOI: 10.1007/s002140050269

Local MP2 with Density Fitting for Periodic Systems: A Parallel Implementation
journal, August 2011

  • Maschio, Lorenzo
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 9
  • DOI: 10.1021/ct200352g

The divide-expand-consolidate family of coupled cluster methods: Numerical illustrations using second order Møller-Plesset perturbation theory
journal, January 2012

  • Høyvik, Ida-Marie; Kristensen, Kasper; Jansik, Branislav
  • The Journal of Chemical Physics, Vol. 136, Issue 1
  • DOI: 10.1063/1.3667266

Fitting basis sets for the RI-MP2 approximate second-order many-body perturbation theory method
journal, August 1998

  • Bernholdt, David E.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 109, Issue 5
  • DOI: 10.1063/1.476732

Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton
journal, April 1999

  • Wilson, Angela K.; Woon, David E.; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 110, Issue 16
  • DOI: 10.1063/1.478678

Integral approximations for LCAO-SCF calculations
journal, October 1993


The relative energies of polypeptide conformers predicted by linear scaling second-order Møller-Plesset perturbation theory
journal, September 2014


Works referencing / citing this record:

A Quadratic Pair Atomic Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals
journal, January 2020

  • Förster, Arno; Franchini, Mirko; van Lenthe, Erik
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 2
  • DOI: 10.1021/acs.jctc.9b00854

Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2)
journal, April 2019

  • Pinski, Peter; Neese, Frank
  • The Journal of Chemical Physics, Vol. 150, Issue 16
  • DOI: 10.1063/1.5086544

Stochastic Self-Consistent Second-Order Green’s Function Method for Correlation Energies of Large Electronic Systems
journal, October 2017

  • Neuhauser, Daniel; Baer, Roi; Zgid, Dominika
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00792

Explicitly correlated local coupled-cluster methods using pair natural orbitals
journal, July 2018

  • Ma, Qianli; Werner, Hans-Joachim
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 8, Issue 6
  • DOI: 10.1002/wcms.1371