DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The same number of optimized parameters scheme for determining intermolecular interaction energies

Abstract

We introduce the Same Number Of Optimized Parameters (SNOOP) scheme as an alternative to the counterpoise method for treating basis set superposition errors in calculations of intermolecular interaction energies. The key point of the SNOOP scheme is to enforce that the number of optimized wave function parameters for the noninteracting system is the same as for the interacting system. This ensures a delicate balance between the quality of the monomer and dimer finite basis set calculations. We compare the SNOOP scheme to the uncorrected and counterpoise schemes theoretically as well as numerically. Numerical results for second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster with single, double, and approximate triple excitations (CCSD(T)) show that the SNOOP scheme in general outperforms the uncorrected and counterpoise approaches. Moreover, we iterate that SNOOP interaction energies calculated using a given basis set are of similar quality as those determined by basis set extrapolation of counterpoise-corrected results obtained at a similar computational cost.

Authors:
 [1];  [1]; ORCiD logo [1];  [1];  [1]
  1. Aarhus Univ. (Denmark)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1565341
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 142; Journal Issue: 11; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Kristensen, Kasper, Ettenhuber, Patrick, Eriksen, Janus Juul, Jensen, Frank, and Jørgensen, Poul. The same number of optimized parameters scheme for determining intermolecular interaction energies. United States: N. p., 2015. Web. doi:10.1063/1.4915141.
Kristensen, Kasper, Ettenhuber, Patrick, Eriksen, Janus Juul, Jensen, Frank, & Jørgensen, Poul. The same number of optimized parameters scheme for determining intermolecular interaction energies. United States. https://doi.org/10.1063/1.4915141
Kristensen, Kasper, Ettenhuber, Patrick, Eriksen, Janus Juul, Jensen, Frank, and Jørgensen, Poul. Fri . "The same number of optimized parameters scheme for determining intermolecular interaction energies". United States. https://doi.org/10.1063/1.4915141. https://www.osti.gov/servlets/purl/1565341.
@article{osti_1565341,
title = {The same number of optimized parameters scheme for determining intermolecular interaction energies},
author = {Kristensen, Kasper and Ettenhuber, Patrick and Eriksen, Janus Juul and Jensen, Frank and Jørgensen, Poul},
abstractNote = {We introduce the Same Number Of Optimized Parameters (SNOOP) scheme as an alternative to the counterpoise method for treating basis set superposition errors in calculations of intermolecular interaction energies. The key point of the SNOOP scheme is to enforce that the number of optimized wave function parameters for the noninteracting system is the same as for the interacting system. This ensures a delicate balance between the quality of the monomer and dimer finite basis set calculations. We compare the SNOOP scheme to the uncorrected and counterpoise schemes theoretically as well as numerically. Numerical results for second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster with single, double, and approximate triple excitations (CCSD(T)) show that the SNOOP scheme in general outperforms the uncorrected and counterpoise approaches. Moreover, we iterate that SNOOP interaction energies calculated using a given basis set are of similar quality as those determined by basis set extrapolation of counterpoise-corrected results obtained at a similar computational cost.},
doi = {10.1063/1.4915141},
journal = {Journal of Chemical Physics},
number = 11,
volume = 142,
place = {United States},
year = {Fri Mar 20 00:00:00 EDT 2015},
month = {Fri Mar 20 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Exact perturbation treatment of the basis set superposition correction
journal, November 1991

  • Sadlej, Andrzej J.
  • The Journal of Chemical Physics, Vol. 95, Issue 9
  • DOI: 10.1063/1.461540

Accurate calculation of the attractive interaction of two ground state helium atoms
journal, October 1973

  • Liu, B.; McLean, A. D.
  • The Journal of Chemical Physics, Vol. 59, Issue 8
  • DOI: 10.1063/1.1680654

Perturbativeab initio calculations of intermolecular energies. I. Method
journal, January 1974

  • Daudey, J. P.; Claverie, P.; Malrieu, J. P.
  • International Journal of Quantum Chemistry, Vol. 8, Issue 1
  • DOI: 10.1002/qua.560080102

Molecular Orbital Calculations of Water Clusters on Counterpoise-Corrected Potential Energy Surfaces
journal, August 2004

  • Wieczorek, Robert; Haskamp, Laury; Dannenberg, J. J.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 32
  • DOI: 10.1021/jp037372p

Some comments on the counterpoise correction for the basis set superposition error at the correlated level
journal, December 1993

  • Cook, D. . B.; Sordo, J. A.; Sordo, T. L.
  • International Journal of Quantum Chemistry, Vol. 48, Issue 6
  • DOI: 10.1002/qua.560480605

Molecular Electronic-Structure Theory
book, August 2000


Some Observations on Counterpoise Corrections for Explicitly Correlated Calculations on Noncovalent Interactions
journal, July 2014

  • Brauer, Brina; Kesharwani, Manoj K.; Martin, Jan M. L.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 9
  • DOI: 10.1021/ct500513b

The basis set superposition error in correlated electronic structure calculations
journal, January 1986


The water dimer interaction energy: Convergence to the basis set limit at the correlated level
journal, September 1997

  • Schütz, Martin; Brdarski, Steve; Widmark, Per-Olof
  • The Journal of Chemical Physics, Vol. 107, Issue 12
  • DOI: 10.1063/1.474820

Can the Counterpoise Correction for Basis Set Superposition Effect Be Justified?
journal, November 2013

  • Mentel, Ł. M.; Baerends, E. J.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 1
  • DOI: 10.1021/ct400990u

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Comparing Counterpoise-Corrected, Uncorrected, and Averaged Binding Energies for Benchmarking Noncovalent Interactions
journal, November 2013

  • Burns, Lori A.; Marshall, Michael S.; Sherrill, C. David
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 1
  • DOI: 10.1021/ct400149j

The Dalton quantum chemistry program system: The Dalton program
journal, September 2013

  • Aidas, Kestutis; Angeli, Celestino; Bak, Keld L.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 3
  • DOI: 10.1002/wcms.1172

Towards a ?Chemical? Hamiltonian
journal, February 1983


Critical evaluation of some computational approaches to the problem of basis set superposition error
journal, April 1993

  • Gutowski, Maciej; Chal/asiński, Grzegorz
  • The Journal of Chemical Physics, Vol. 98, Issue 7
  • DOI: 10.1063/1.464901

A fifth-order perturbation comparison of electron correlation theories
journal, May 1989


Second-order BSSE-free perturbation theory: intermolecular interactions within supermolecular approach
journal, May 1991


An examination of the effects of basis set and charge transfer in hydrogen-bonded dimers with a constrained Hartree-Fock method
journal, January 1991

  • Cullen, John M.
  • International Journal of Quantum Chemistry, Vol. 40, Issue S25
  • DOI: 10.1002/qua.560400821

An analytical investigation into the bsse problem
journal, March 1991


Basis-set convergence in correlated calculations on Ne, N2, and H2O
journal, April 1998


Proper correction for the basis set superposition error in SCF calculations of intermolecular interactions
journal, May 1987

  • Gutowski, Maciej; Van Duijneveldt, Frans B.; Chałasiński, Grzegorz
  • Molecular Physics, Vol. 61, Issue 1
  • DOI: 10.1080/00268978700101101

The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
journal, October 1970


Note on an Approximation Treatment for Many-Electron Systems
journal, October 1934


Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes
journal, November 1994

  • Jeziorski, Bogumil; Moszynski, Robert; Szalewicz, Krzysztof
  • Chemical Reviews, Vol. 94, Issue 7
  • DOI: 10.1021/cr00031a008

State of the Art in Counterpoise Theory
journal, November 1994

  • van Duijneveldt, Frans B.; van Duijneveldt-van de Rijdt, Jeanne G. C. M.; van Lenthe, Joop H.
  • Chemical Reviews, Vol. 94, Issue 7
  • DOI: 10.1021/cr00031a007

A systematic ab initio study of the water dimer in hierarchies of basis sets and correlation models
journal, October 1997

  • Halkier, Asger; Koch, Henrik; Jørgensen, Poul
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 97, Issue 1-4
  • DOI: 10.1007/s002140050248

Accuracy of the Boys and Bernardi function counterpoise method
journal, March 1993

  • Gutowski, Maciej; van Duijneveldt‐van de Rijdt, Jeanne G. C. M.; van Lenthe, Joop H.
  • The Journal of Chemical Physics, Vol. 98, Issue 6
  • DOI: 10.1063/1.465106

Ab initio calculations on weakly bonded systems
journal, January 1984

  • van Lenthe, Joop H.; van Dam, Teus; van Duijneveldt, Frans B.
  • Faraday Symposia of the Chemical Society, Vol. 19
  • DOI: 10.1039/fs9841900125

Calculating the Properties of Hydrogen Bonds by ab Initio Methods
book, January 1991