DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model

Abstract

The Glimmer Community Ice Sheet Model (Glimmer-CISM) has been implemented in the Community Earth System Model (CESM). Glimmer-CISM is forced by a surface mass balance (SMB) computed in multiple elevation classes in the CESM land model and downscaled to the ice sheet grid. Ice sheet evolution is governed by the shallow-ice approximation with thermomechanical coupling and basal sliding. This paper describes and evaluates the initial model implementation for the Greenland Ice Sheet (GIS). The ice sheet model was spun up using the SMB from a coupled CESM simulation with preindustrial forcing. The model's sensitivity to three key ice sheet parameters was explored by running an ensemble of 100 GIS simulations to quasi equilibrium and ranking each simulation based on multiple diagnostics. With reasonable parameter choices, the steady-state GIS geometry is broadly consistent with observations. The simulated ice sheet is too thick and extensive, however, in some marginal regions where the SMB is anomalously positive. The top-ranking simulations were continued using surface forcing from CESM simulations of the twentieth century (1850–2005) and twenty-first century (2005–2100, with RCP8.5 forcing). In these simulations the GIS loses mass, with a resulting global-mean sea level rise of 16 mm during 1850–2005 and 60 mm duringmore » 2005–2100. This mass loss is caused mainly by increased ablation near the ice sheet margin, offset by reduced ice discharge to the ocean. Projected sea level rise is sensitive to the initial geometry, showing the importance of realistic geometry in the spun-up ice sheet.« less

Authors:
 [1];  [1];  [2];  [3];  [3];  [3];  [3];  [3];  [3]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Utrecht Univ., Utrecht (Netherlands). Inst. for Marine and Atmospheric Research; Univ. of California, Berkeley, CA (United States). Dept. of Geography
  3. National Center for Atmospheric Research, Boulder, CO (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); UT-Battelle LLC/ORNL, Oak Ridge, TN (United States); Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Bettis Atomic Power Laboratory (BAPL), West Mifflin, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1565231
Grant/Contract Number:  
AC05-00OR22725; AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Climate
Additional Journal Information:
Journal Volume: 26; Journal Issue: 19; Journal ID: ISSN 0894-8755
Publisher:
American Meteorological Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Meteorology & Atmospheric Sciences; Arctic; Ice sheets; Climate models; Coupled models

Citation Formats

Lipscomb, William H., Fyke, Jeremy G., Vizcaíno, Miren, Sacks, William J., Wolfe, Jon, Vertenstein, Mariana, Craig, Anthony, Kluzek, Erik, and Lawrence, David M. Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model. United States: N. p., 2013. Web. doi:10.1175/jcli-d-12-00557.1.
Lipscomb, William H., Fyke, Jeremy G., Vizcaíno, Miren, Sacks, William J., Wolfe, Jon, Vertenstein, Mariana, Craig, Anthony, Kluzek, Erik, & Lawrence, David M. Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model. United States. https://doi.org/10.1175/jcli-d-12-00557.1
Lipscomb, William H., Fyke, Jeremy G., Vizcaíno, Miren, Sacks, William J., Wolfe, Jon, Vertenstein, Mariana, Craig, Anthony, Kluzek, Erik, and Lawrence, David M. Tue . "Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model". United States. https://doi.org/10.1175/jcli-d-12-00557.1. https://www.osti.gov/servlets/purl/1565231.
@article{osti_1565231,
title = {Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model},
author = {Lipscomb, William H. and Fyke, Jeremy G. and Vizcaíno, Miren and Sacks, William J. and Wolfe, Jon and Vertenstein, Mariana and Craig, Anthony and Kluzek, Erik and Lawrence, David M.},
abstractNote = {The Glimmer Community Ice Sheet Model (Glimmer-CISM) has been implemented in the Community Earth System Model (CESM). Glimmer-CISM is forced by a surface mass balance (SMB) computed in multiple elevation classes in the CESM land model and downscaled to the ice sheet grid. Ice sheet evolution is governed by the shallow-ice approximation with thermomechanical coupling and basal sliding. This paper describes and evaluates the initial model implementation for the Greenland Ice Sheet (GIS). The ice sheet model was spun up using the SMB from a coupled CESM simulation with preindustrial forcing. The model's sensitivity to three key ice sheet parameters was explored by running an ensemble of 100 GIS simulations to quasi equilibrium and ranking each simulation based on multiple diagnostics. With reasonable parameter choices, the steady-state GIS geometry is broadly consistent with observations. The simulated ice sheet is too thick and extensive, however, in some marginal regions where the SMB is anomalously positive. The top-ranking simulations were continued using surface forcing from CESM simulations of the twentieth century (1850–2005) and twenty-first century (2005–2100, with RCP8.5 forcing). In these simulations the GIS loses mass, with a resulting global-mean sea level rise of 16 mm during 1850–2005 and 60 mm during 2005–2100. This mass loss is caused mainly by increased ablation near the ice sheet margin, offset by reduced ice discharge to the ocean. Projected sea level rise is sensitive to the initial geometry, showing the importance of realistic geometry in the spun-up ice sheet.},
doi = {10.1175/jcli-d-12-00557.1},
journal = {Journal of Climate},
number = 19,
volume = 26,
place = {United States},
year = {Tue Sep 24 00:00:00 EDT 2013},
month = {Tue Sep 24 00:00:00 EDT 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 63 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Schematic of CESM 1.0, which consists of five physical components (atmosphere, ocean, land surface, sea ice, and ice sheet) linked by a coupler. The surface mass balance and surface temperature of ice sheets are computed in the land model for 10 elevation classes in each glaciated grid cellmore » and then are passed via the coupler to the dynamic ice sheet model. The atmosphere and land models exchange fields hourly, and the land model passes fields to the ice sheet model daily. Within the ice sheet model, the surface mass balance (SMB) is accumulated and averaged over the mass balance time step, typically 1 year.« less

Save / Share:

Works referenced in this record:

An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior
journal, January 2012

  • Applegate, P. J.; Kirchner, N.; Stone, E. J.
  • The Cryosphere, Vol. 6, Issue 3
  • DOI: 10.5194/tc-6-589-2012

A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors
journal, December 2001

  • Bamber, J. L.; Layberry, R. L.; Gogineni, S. P.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D24
  • DOI: 10.1029/2001JD900054

Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)
journal, January 2013

  • Bindschadler, Robert A.; Nowicki, Sophie; Abe-Ouchi, Ayako
  • Journal of Glaciology, Vol. 59, Issue 214
  • DOI: 10.3189/2013JoG12J125

The ablation zone in northeast Greenland: ice types, albedos and impurities
journal, January 2010

  • Bøggild, Carl Egede; Brandt, Richard E.; Brown, Kendrick J.
  • Journal of Glaciology, Vol. 56, Issue 195
  • DOI: 10.3189/002214310791190776

Impact of model physics on estimating the surface mass balance of the Greenland ice sheet
journal, January 2007

  • Bougamont, Marion; Bamber, Jonathan L.; Ridley, Jeff K.
  • Geophysical Research Letters, Vol. 34, Issue 17
  • DOI: 10.1029/2007GL030700

Revisiting the Earth's sea-level and energy budgets from 1961 to 2008: SEA-LEVEL AND ENERGY BUDGETS
journal, September 2011

  • Church, John A.; White, Neil J.; Konikow, Leonard F.
  • Geophysical Research Letters, Vol. 38, Issue 18
  • DOI: 10.1029/2011GL048794

Adaptive mesh, finite volume modeling of marine ice sheets
journal, January 2013

  • Cornford, Stephen L.; Martin, Daniel F.; Graves, Daniel T.
  • Journal of Computational Physics, Vol. 232, Issue 1
  • DOI: 10.1016/j.jcp.2012.08.037

Linking snowpack microphysics and albedo evolution
journal, January 2006

  • Flanner, Mark G.; Zender, Charles S.
  • Journal of Geophysical Research, Vol. 111, Issue D12
  • DOI: 10.1029/2005JD006834

The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer
journal, January 2008


The Community Climate System Model Version 4
journal, October 2011

  • Gent, Peter R.; Danabasoglu, Gokhan; Donner, Leo J.
  • Journal of Climate, Vol. 24, Issue 19
  • DOI: 10.1175/2011JCLI4083.1

Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model
journal, January 2012


Modelling large-scale ice-sheet–climate interactions following glacial inception
posted_content, January 2012


Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current
journal, May 2012

  • Hellmer, Hartmut H.; Kauker, Frank; Timmermann, Ralph
  • Nature, Vol. 485, Issue 7397
  • DOI: 10.1038/nature11064

Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters
journal, September 2008

  • Holland, David M.; Thomas, Robert H.; de Young, Brad
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo316

Rapid Changes in Ice Discharge from Greenland Outlet Glaciers
journal, March 2007


Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century
journal, January 2009

  • Hu, Aixue; Meehl, Gerald A.; Han, Weiqing
  • Geophysical Research Letters, Vol. 36, Issue 10
  • DOI: 10.1029/2009GL037998

High-resolution precipitation and temperature downscaling for glacier models
journal, December 2010

  • Jarosch, Alexander H.; Anslow, Faron S.; Clarke, Garry K. C.
  • Climate Dynamics, Vol. 38, Issue 1-2
  • DOI: 10.1007/s00382-010-0949-1

Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM): ICE SHEET SYSTEM MODEL
journal, March 2012

  • Larour, E.; Seroussi, H.; Morlighem, M.
  • Journal of Geophysical Research: Earth Surface, Vol. 117, Issue F1
  • DOI: 10.1029/2011JF002140

Kinematic first-order calving law implies potential for abrupt ice-shelf retreat
journal, January 2012


A Community Ice Sheet Model for Sea Level Prediction: Building a Next-Generation Community Ice Sheet Model; Los Alamos, New Mexico, 18–20 August 2008
journal, January 2009

  • Lipscomb, William; Bindschadler, Robert; Bueler, Ed
  • Eos, Transactions American Geophysical Union, Vol. 90, Issue 3
  • DOI: 10.1029/2009EO030004

Toward a New Generation of Ice Sheet Models
journal, January 2007

  • Little, Christopher M.; Oppenheimer, Michael; Alley, Richard B.
  • Eos, Transactions American Geophysical Union, Vol. 88, Issue 52
  • DOI: 10.1029/2007EO520002

Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM)
journal, January 2008

  • Pattyn, F.; Perichon, L.; Aschwanden, A.
  • The Cryosphere, Vol. 2, Issue 2
  • DOI: 10.5194/tc-2-95-2008

Parallel finite-element implementation for higher-order ice-sheet models
journal, January 2012

  • Perego, Mauro; Gunzburger, Max; Burkardt, John
  • Journal of Glaciology, Vol. 58, Issue 207
  • DOI: 10.3189/2012JoG11J063

Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade
journal, May 2011

  • Price, S. F.; Payne, A. J.; Howat, I. M.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 22
  • DOI: 10.1073/pnas.1017313108

Antarctic ice-sheet loss driven by basal melting of ice shelves
journal, April 2012

  • Pritchard, H. D.; Ligtenberg, S. R. M.; Fricker, H. A.
  • Nature, Vol. 484, Issue 7395
  • DOI: 10.1038/nature10968

A new view on sea level rise
journal, April 2010


Elimination of the Greenland Ice Sheet in a High CO 2 Climate
journal, September 2005

  • Ridley, J. K.; Huybrechts, P.; Gregory, J. M.
  • Journal of Climate, Vol. 18, Issue 17
  • DOI: 10.1175/JCLI3482.1

Thresholds for irreversible decline of the Greenland ice sheet
journal, August 2009


Recent Antarctic ice mass loss from radar interferometry and regional climate modelling
journal, January 2008

  • Rignot, Eric; Bamber, Jonathan L.; van den Broeke, Michiel R.
  • Nature Geoscience, Vol. 1, Issue 2
  • DOI: 10.1038/ngeo102

The Glimmer community ice sheet model
journal, January 2009

  • Rutt, I. C.; Hagdorn, M.; Hulton, N. R. J.
  • Journal of Geophysical Research, Vol. 114, Issue F2
  • DOI: 10.1029/2008JF001015

The effect of cavitation on glacier sliding
journal, March 2005

  • Schoof, Christian
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 461, Issue 2055
  • DOI: 10.1098/rspa.2004.1350

Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise
journal, August 2013

  • Shannon, S. R.; Payne, A. J.; Bartholomew, I. D.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 35
  • DOI: 10.1073/pnas.1212647110

Warm ocean is eroding West Antarctic Ice Sheet: WARM OCEAN IS ERODING WAIS
journal, December 2004

  • Shepherd, Andrew; Wingham, Duncan; Rignot, Eric
  • Geophysical Research Letters, Vol. 31, Issue 23
  • DOI: 10.1029/2004GL021106

Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage
journal, January 2011

  • Sundal, Aud Venke; Shepherd, Andrew; Nienow, Peter
  • Nature, Vol. 469, Issue 7331
  • DOI: 10.1038/nature09740

An Overview of CMIP5 and the Experiment Design
journal, April 2012

  • Taylor, Karl E.; Stouffer, Ronald J.; Meehl, Gerald A.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 4
  • DOI: 10.1175/BAMS-D-11-00094.1

Partitioning Recent Greenland Mass Loss
journal, November 2009


Climate modification by future ice sheet changes and consequences for ice sheet mass balance
journal, June 2009


Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part I: Model Evaluation and 1850–2005 Results
journal, October 2013

  • Vizcaíno, Miren; Lipscomb, William H.; Sacks, William J.
  • Journal of Climate, Vol. 26, Issue 20
  • DOI: 10.1175/JCLI-D-12-00615.1

Works referencing / citing this record:

LIVVkit 2.1: automated and extensible ice sheet model validation
journal, January 2019

  • Evans, Katherine J.; Kennedy, Joseph H.; Lu, Dan
  • Geoscientific Model Development, Vol. 12, Issue 3
  • DOI: 10.5194/gmd-12-1067-2019

OBLIMAP 2.0: a fast climate model–ice sheet model coupler including online embeddable mapping routines
journal, January 2016

  • Reerink, Thomas J.; van de Berg, Willem Jan; van de Wal, Roderik S. W.
  • Geoscientific Model Development, Vol. 9, Issue 11
  • DOI: 10.5194/gmd-9-4111-2016

Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise
journal, July 2018

  • Moon, Twila; Ahlstrøm, Andreas; Goelzer, Heiko
  • Current Climate Change Reports, Vol. 4, Issue 3
  • DOI: 10.1007/s40641-018-0107-0

Improving the representation of anthropogenic CO2 emissions in climate models: impact of a new parameterization for the Community Earth System Model (CESM)
journal, January 2018

  • Navarro, Andrés; Moreno, Raúl; Tapiador, Francisco J.
  • Earth System Dynamics, Vol. 9, Issue 3
  • DOI: 10.5194/esd-9-1045-2018

Albany/FELIX : a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis
journal, January 2015

  • Tezaur, I. K.; Perego, M.; Salinger, A. G.
  • Geoscientific Model Development, Vol. 8, Issue 4
  • DOI: 10.5194/gmd-8-1197-2015

Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization
journal, January 2015


Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model
journal, February 2016


Regional grid refinement in an Earth system model: impacts on the simulated Greenland surface mass balance
journal, January 2019

  • van Kampenhout, Leonardus; Rhoades, Alan M.; Herrington, Adam R.
  • The Cryosphere, Vol. 13, Issue 6
  • DOI: 10.5194/tc-13-1547-2019

Surface mass balance downscaling through elevation classes in an Earth system model: application to the Greenland ice sheet
journal, January 2019

  • Sellevold, Raymond; van Kampenhout, Leonardus; Lenaerts, Jan T. M.
  • The Cryosphere, Vol. 13, Issue 12
  • DOI: 10.5194/tc-13-3193-2019

Ice flux evolution in fast flowing areas of the Greenland ice sheet over the 20th and 21st centuries
journal, March 2017

  • Peano, Daniele; Colleoni, Florence; Quiquet, AurÉLien
  • Journal of Glaciology, Vol. 63, Issue 239
  • DOI: 10.1017/jog.2017.12

Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model
journal, January 2014

  • Leguy, G. R.; Asay-Davis, X. S.; Lipscomb, W. H.
  • The Cryosphere, Vol. 8, Issue 4
  • DOI: 10.5194/tc-8-1239-2014

A glacier runoff extension to the Precipitation Runoff Modeling System: A Glacier Runoff Extension to PRMS
journal, November 2016

  • Van Beusekom, A. E.; Viger, R. J.
  • Journal of Geophysical Research: Earth Surface, Vol. 121, Issue 11
  • DOI: 10.1002/2015jf003789

Glacial Inception in Marine Isotope Stage 19: An Orbital Analog for a Natural Holocene Climate
journal, July 2018


Decline in Atlantic Primary Production Accelerated by Greenland Ice Sheet Melt
journal, October 2019

  • Kwiatkowski, Lester; Naar, Joseph; Bopp, Laurent
  • Geophysical Research Letters, Vol. 46, Issue 20
  • DOI: 10.1029/2019gl085267

Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming
journal, January 2015


Applying the Community Ice Sheet Model to evaluate PMIP3 LGM climatologies over the North American ice sheets
journal, March 2019


Description and evaluation of the Community Ice Sheet Model (CISM) v2.1
journal, January 2019

  • Lipscomb, William H.; Price, Stephen F.; Hoffman, Matthew J.
  • Geoscientific Model Development, Vol. 12, Issue 1
  • DOI: 10.5194/gmd-12-387-2019

Semi-brittle rheology and ice dynamics in DynEarthSol3D
journal, January 2017


Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet
journal, January 2018


Coupling population dynamics with earth system models: the POPEM model
journal, September 2017

  • Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso
  • Environmental Science and Pollution Research, Vol. 26, Issue 4
  • DOI: 10.1007/s11356-017-0127-7

MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids
journal, January 2018

  • Hoffman, Matthew J.; Perego, Mauro; Price, Stephen F.
  • Geoscientific Model Development, Vol. 11, Issue 9
  • DOI: 10.5194/gmd-11-3747-2018

Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6
journal, January 2016

  • Nowicki, Sophie M. J.; Payne, Anthony; Larour, Eric
  • Geoscientific Model Development, Vol. 9, Issue 12
  • DOI: 10.5194/gmd-9-4521-2016

Semi-brittle rheology and ice dynamics in DynEarthSol3D
journal, April 2016

  • Logan, Liz C.; Lavier, Luc L.; Choi, Eunseo
  • The Cryosphere Discussions
  • DOI: 10.5194/tc-2016-88