skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Climate Change Projections in CESM1(CAM5) Compared to CCSM4

Abstract

Future climate change projections for phase 5 of the Coupled Model Intercomparison Project (CMIP5) are introduced for the Community Earth System Model version 1 that includes the Community Atmospheric Model version 5 [CESM1(CAM5)]. These findings are compared to the Community Climate System Model, version 4 (CCSM4) and include simulations using the representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100 to 2300. Equilibrium climate sensitivity of CESM1(CAM5) is 4.10°C, which is higher than the CCSM4 value of 3.20°C. The transient climate response is 2.33°C, compared to the CCSM4 value of 1.73°C. Thus, even though CESM1(CAM5) includes both the direct and indirect effects of aerosols (CCSM4 had only the direct effect), the overall climate system response including forcing and feedbacks is greater in CESM1(CAM5) compared to CCSM4. The Atlantic Ocean meridional overturning circulation (AMOC) in CESM1(CAM5) weakens considerably in the twenty-first century in all the RCP scenarios, and recovers more slowly in the lower forcing scenarios. The total aerosol optical depth (AOD) changes from ~0.12 in 2006 to ~0.10 in 2100, compared to a preindustrial 1850 value of 0.08, so there is less negative forcing (a net positive forcing) from that source during the twenty-first century. Asmore » a result, the change from 2006 to 2100 in aerosol direct forcing in CESM1(CAM5) contributes to greater twenty-first century warming relative to CCSM4. There is greater Arctic warming and sea ice loss in CESM1(CAM5), with an ice-free summer Arctic occurring by about 2060 in RCP8.5 (2040s in September) as opposed to about 2100 in CCSM4 (2060s in September).« less

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. National Center for Atmospheric Research, Boulder, CO (United States)
  2. National Center for Atmospheric Research, Boulder, CO (United States); Bureau of Meteorology, Melbourne, VIC (Australia)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1565089
Grant/Contract Number:  
AC02-05CH11231; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Climate
Additional Journal Information:
Journal Volume: 26; Journal Issue: 17; Journal ID: ISSN 0894-8755
Publisher:
American Meteorological Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Meridional overturning circulation; Clouds; Greenhouse gases; Climate models; Coupled models

Citation Formats

Meehl, Gerald A., Washington, Warren M., Arblaster, Julie M., Hu, Aixue, Teng, Haiyan, Kay, Jennifer E., Gettelman, Andrew, Lawrence, David M., Sanderson, Benjamin M., and Strand, Warren G. Climate Change Projections in CESM1(CAM5) Compared to CCSM4. United States: N. p., 2013. Web. doi:10.1175/jcli-d-12-00572.1.
Meehl, Gerald A., Washington, Warren M., Arblaster, Julie M., Hu, Aixue, Teng, Haiyan, Kay, Jennifer E., Gettelman, Andrew, Lawrence, David M., Sanderson, Benjamin M., & Strand, Warren G. Climate Change Projections in CESM1(CAM5) Compared to CCSM4. United States. doi:10.1175/jcli-d-12-00572.1.
Meehl, Gerald A., Washington, Warren M., Arblaster, Julie M., Hu, Aixue, Teng, Haiyan, Kay, Jennifer E., Gettelman, Andrew, Lawrence, David M., Sanderson, Benjamin M., and Strand, Warren G. Fri . "Climate Change Projections in CESM1(CAM5) Compared to CCSM4". United States. doi:10.1175/jcli-d-12-00572.1. https://www.osti.gov/servlets/purl/1565089.
@article{osti_1565089,
title = {Climate Change Projections in CESM1(CAM5) Compared to CCSM4},
author = {Meehl, Gerald A. and Washington, Warren M. and Arblaster, Julie M. and Hu, Aixue and Teng, Haiyan and Kay, Jennifer E. and Gettelman, Andrew and Lawrence, David M. and Sanderson, Benjamin M. and Strand, Warren G.},
abstractNote = {Future climate change projections for phase 5 of the Coupled Model Intercomparison Project (CMIP5) are introduced for the Community Earth System Model version 1 that includes the Community Atmospheric Model version 5 [CESM1(CAM5)]. These findings are compared to the Community Climate System Model, version 4 (CCSM4) and include simulations using the representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100 to 2300. Equilibrium climate sensitivity of CESM1(CAM5) is 4.10°C, which is higher than the CCSM4 value of 3.20°C. The transient climate response is 2.33°C, compared to the CCSM4 value of 1.73°C. Thus, even though CESM1(CAM5) includes both the direct and indirect effects of aerosols (CCSM4 had only the direct effect), the overall climate system response including forcing and feedbacks is greater in CESM1(CAM5) compared to CCSM4. The Atlantic Ocean meridional overturning circulation (AMOC) in CESM1(CAM5) weakens considerably in the twenty-first century in all the RCP scenarios, and recovers more slowly in the lower forcing scenarios. The total aerosol optical depth (AOD) changes from ~0.12 in 2006 to ~0.10 in 2100, compared to a preindustrial 1850 value of 0.08, so there is less negative forcing (a net positive forcing) from that source during the twenty-first century. As a result, the change from 2006 to 2100 in aerosol direct forcing in CESM1(CAM5) contributes to greater twenty-first century warming relative to CCSM4. There is greater Arctic warming and sea ice loss in CESM1(CAM5), with an ice-free summer Arctic occurring by about 2060 in RCP8.5 (2040s in September) as opposed to about 2100 in CCSM4 (2060s in September).},
doi = {10.1175/jcli-d-12-00572.1},
journal = {Journal of Climate},
number = 17,
volume = 26,
place = {United States},
year = {2013},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 144 works
Citation information provided by
Web of Science

Save / Share: