skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas

Abstract

An unsolved problem in plasma turbulence is how energy is dissipated at small scales. Particle collisions are too infrequent in hot plasmas to provide the necessary dissipation. Simulations either treat the fluid scales and impose an ad hoc form of dissipation (e.g., resistivity) or consider dissipation arising from resonant damping of small amplitude disturbances where damping rates are found to be comparable to that predicted from linear theory. Here, we report kinetic simulations that span the macroscopic fluid scales down to the motion of electrons. We find that turbulent cascade leads to generation of coherent structures in the form of current sheets that steepen to electron scales, triggering strong localized heating of the plasma. The dominant heating mechanism is due to parallel electric fields associated with the current sheets, leading to anisotropic electron and ion distributions which can be measured with NASA's upcoming Magnetospheric Multiscale mission. The motion of coherent structures also generates waves that are emitted into the ambient plasma in form of highly oblique compressional and shear Alfven modes. In 3D, modes propagating at other angles can also be generated. This indicates that intermittent plasma turbulence will in general consist of both coherent structures and waves. However, themore » current sheet heating is found to be locally several orders of magnitude more efficient than wave damping and is sufficient to explain the observed heating rates in the solar wind.« less

Authors:
 [1];  [1];  [2];  [2];  [3];  [2];  [2];  [4];  [5];  [6];  [6];  [3]
  1. Univ. of California, San Diego, CA (United States)
  2. Univ. of Delaware, Newark, DE (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Space Science Inst., Boulder, CO (United States)
  6. Univ. of Warwick, Coventry (United Kingdom)
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1564998
Grant/Contract Number:  
AC05-00OR22725; SC0004662
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 20; Journal Issue: 1; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Physics

Citation Formats

Karimabadi, H., Roytershteyn, V., Wan, M., Matthaeus, W. H., Daughton, W., Wu, P., Shay, M., Loring, B., Borovsky, J., Leonardis, E., Chapman, S. C., and Nakamura, T. K. M. Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. United States: N. p., 2013. Web. doi:10.1063/1.4773205.
Karimabadi, H., Roytershteyn, V., Wan, M., Matthaeus, W. H., Daughton, W., Wu, P., Shay, M., Loring, B., Borovsky, J., Leonardis, E., Chapman, S. C., & Nakamura, T. K. M. Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. United States. doi:10.1063/1.4773205.
Karimabadi, H., Roytershteyn, V., Wan, M., Matthaeus, W. H., Daughton, W., Wu, P., Shay, M., Loring, B., Borovsky, J., Leonardis, E., Chapman, S. C., and Nakamura, T. K. M. Wed . "Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas". United States. doi:10.1063/1.4773205. https://www.osti.gov/servlets/purl/1564998.
@article{osti_1564998,
title = {Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas},
author = {Karimabadi, H. and Roytershteyn, V. and Wan, M. and Matthaeus, W. H. and Daughton, W. and Wu, P. and Shay, M. and Loring, B. and Borovsky, J. and Leonardis, E. and Chapman, S. C. and Nakamura, T. K. M.},
abstractNote = {An unsolved problem in plasma turbulence is how energy is dissipated at small scales. Particle collisions are too infrequent in hot plasmas to provide the necessary dissipation. Simulations either treat the fluid scales and impose an ad hoc form of dissipation (e.g., resistivity) or consider dissipation arising from resonant damping of small amplitude disturbances where damping rates are found to be comparable to that predicted from linear theory. Here, we report kinetic simulations that span the macroscopic fluid scales down to the motion of electrons. We find that turbulent cascade leads to generation of coherent structures in the form of current sheets that steepen to electron scales, triggering strong localized heating of the plasma. The dominant heating mechanism is due to parallel electric fields associated with the current sheets, leading to anisotropic electron and ion distributions which can be measured with NASA's upcoming Magnetospheric Multiscale mission. The motion of coherent structures also generates waves that are emitted into the ambient plasma in form of highly oblique compressional and shear Alfven modes. In 3D, modes propagating at other angles can also be generated. This indicates that intermittent plasma turbulence will in general consist of both coherent structures and waves. However, the current sheet heating is found to be locally several orders of magnitude more efficient than wave damping and is sufficient to explain the observed heating rates in the solar wind.},
doi = {10.1063/1.4773205},
journal = {Physics of Plasmas},
number = 1,
volume = 20,
place = {United States},
year = {2013},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 175 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Development of turbulence in physical space. (a) Formation of current sheets on the edge of the vortex. Current is normalized to en0c. (b) Wrapping of current sheets inside the vortex and continuation of secondary instabilities. (c) Full development of turbulence. (d) Hierarchy of coherent structures as seen inmore » close up of a region marked with a rectangle in (c). The size of each minor tick mark in Fig. 7(d) corresponds to 2de.« less

Save / Share:

Works referenced in this record:

Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence
journal, January 1995

  • Goldreich, P.; Sridhar, S.
  • The Astrophysical Journal, Vol. 438
  • DOI: 10.1086/175121

Nearly incompressible fluids. II: Magnetohydrodynamics, turbulence, and waves
journal, January 1993

  • Zank, G. P.; Matthaeus, W. H.
  • Physics of Fluids A: Fluid Dynamics, Vol. 5, Issue 1
  • DOI: 10.1063/1.858780

Scaling, Intermittency and Decay of MHD Turbulence
journal, January 2005


Structure of the electromagnetic field in three-dimensional Hall magnetohydrodynamic turbulence
journal, April 2006

  • Dmitruk, Pablo; Matthaeus, W. H.
  • Physics of Plasmas, Vol. 13, Issue 4
  • DOI: 10.1063/1.2192757

Spectral Slope and Kolmogorov Constant of MHD Turbulence
journal, February 2011


Three-Dimensional Magnetohydrodynamic Modeling of the Solar wind Including Pickup Protons and Turbulence Transport
journal, July 2012

  • Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
  • The Astrophysical Journal, Vol. 754, Issue 1
  • DOI: 10.1088/0004-637X/754/1/40

Lack of universality in decaying magnetohydrodynamic turbulence
journal, January 2010


Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma
journal, March 2009

  • Parashar, T. N.; Shay, M. A.; Cassak, P. A.
  • Physics of Plasmas, Vol. 16, Issue 3
  • DOI: 10.1063/1.3094062

Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
journal, July 2011


Whistler turbulence forward cascade: Three-dimensional particle-in-cell simulations: WHISTLER TURBULENCE SIMULATIONS
journal, November 2011

  • Chang, Ouliang; Peter Gary, S.; Wang, Joseph
  • Geophysical Research Letters, Vol. 38, Issue 22
  • DOI: 10.1029/2011GL049827

Kinetic cascade beyond magnetohydrodynamics of solar wind turbulence in two-dimensional hybrid simulations
journal, February 2012

  • Verscharen, D.; Marsch, E.; Motschmann, U.
  • Physics of Plasmas, Vol. 19, Issue 2
  • DOI: 10.1063/1.3682960

Local Kinetic Effects in Two-Dimensional Plasma Turbulence
journal, January 2012


Spectrum of Kinetic-AlfvÉN Turbulence
journal, October 2012


Linear and nonlinear Landau resonance of kinetic Alfvén waves: Consequences for electron distribution and wave spectrum in the solar wind
journal, January 2011

  • Rudakov, L.; Mithaiwala, M.; Ganguli, G.
  • Physics of Plasmas, Vol. 18, Issue 1
  • DOI: 10.1063/1.3532819

AstroGK: Astrophysical gyrokinetics code
journal, December 2010

  • Numata, Ryusuke; Howes, Gregory G.; Tatsuno, Tomoya
  • Journal of Computational Physics, Vol. 229, Issue 24
  • DOI: 10.1016/j.jcp.2010.09.006

Intermittent Dissipation at Kinetic Scales in Collisionless Plasma Turbulence
journal, November 2012


Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation
journal, May 2008

  • Bowers, K. J.; Albright, B. J.; Yin, L.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2840133

Generation of Magnetic Field by Combined Action of Turbulence and Shear
journal, May 2008


Magnetorotational instability: recent developments
journal, April 2010

  • Julien, Keith; Knobloch, Edgar
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1916
  • DOI: 10.1098/rsta.2009.0251

Evidence of a Cascade and Dissipation of Solar-Wind Turbulence at the Electron Gyroscale
journal, June 2009


Small‐Scale Energy Cascade of the Solar Wind Turbulence
journal, February 2008

  • Alexandrova, O.; Carbone, V.; Veltri, P.
  • The Astrophysical Journal, Vol. 674, Issue 2
  • DOI: 10.1086/524056

What Are the Relative Roles of Heating and Cooling in Generating Solar Wind Temperature Anisotropies?
journal, November 2011


On the role of plasma parameters and the Kelvin-Helmholtz instability in a viscous interaction of solar wind streams
journal, September 1984


Velocity shear generation of solar wind turbulence
journal, January 1992

  • Roberts, D. Aaron; Goldstein, Melvyn L.; Matthaeus, William H.
  • Journal of Geophysical Research, Vol. 97, Issue A11
  • DOI: 10.1029/92JA01144

Evolution of turbulent magnetic fluctuation power with heliospheric distance
journal, August 1996

  • Zank, G. P.; Matthaeus, W. H.; Smith, C. W.
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A8
  • DOI: 10.1029/96JA01275

Turbulence transport throughout the heliosphere: TURBULENCE TRANSPORT IN THE HELIOSPHERE
journal, August 2008

  • Breech, B.; Matthaeus, W. H.; Minnie, J.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A8
  • DOI: 10.1029/2007JA012711

Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma
journal, January 1982


Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices
journal, September 2001


Structure of an MHD-scale Kelvin-Helmholtz vortex: Two-dimensional two-fluid simulations including finite electron inertial effects: THE STRUCTURE OF AN MHD-SCALE KH VORTEX
journal, September 2008

  • Nakamura, T. K. M.; Fujimoto, M.; Otto, A.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A9
  • DOI: 10.1029/2007JA012803

Test Particle Energization by Current Sheets and Nonuniform Fields in Magnetohydrodynamic Turbulence
journal, December 2004

  • Dmitruk, Pablo; Matthaeus, W. H.; Seenu, N.
  • The Astrophysical Journal, Vol. 617, Issue 1
  • DOI: 10.1086/425301

On Spectral Breaks in the Power Spectra of Magnetic Fluctuations in fast Solar wind Between 0.3 and 0.9 au
journal, March 2012


High-order velocity structure functions in turbulent shear flows
journal, March 1984


Some specific features of atmospheric turbulence
journal, July 1962


The Phenomenology of Small-Scale Turbulence
journal, January 1997


Local relaxation and maximum entropy in two-dimensional turbulence
journal, December 2010

  • Servidio, S.; Wan, M.; Matthaeus, W. H.
  • Physics of Fluids, Vol. 22, Issue 12
  • DOI: 10.1063/1.3526760

Large-scale electron acceleration by parallel electric fields during magnetic reconnection
journal, February 2012

  • Egedal, J.; Daughton, W.; Le, A.
  • Nature Physics, Vol. 8, Issue 4
  • DOI: 10.1038/nphys2249

Kinetic Physics of the Solar Corona and Solar Wind
journal, January 2006


Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU: CASCADE AND HEATING RATES AT 1 AU
journal, July 2007

  • Vasquez, Bernard J.; Smith, Charles W.; Hamilton, Kathleen
  • Journal of Geophysical Research: Space Physics, Vol. 112, Issue A7
  • DOI: 10.1029/2007JA012305

Evidence for Inhomogeneous Heating in the Solar wind
journal, December 2010


Influence of the Lower-Hybrid Drift Instability on Magnetic Reconnection in Asymmetric Configurations
journal, May 2012


Dissipation in Turbulent Plasma due to Reconnection in Thin Current Sheets
journal, July 2007


Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas
journal, May 2009

  • Schekochihin, A. A.; Cowley, S. C.; Dorland, W.
  • The Astrophysical Journal Supplement Series, Vol. 182, Issue 1
  • DOI: 10.1088/0067-0049/182/1/310

    Works referencing / citing this record:

    Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas
    journal, May 2015

    • Matthaeus, W. H.; Wan, Minping; Servidio, S.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2041
    • DOI: 10.1098/rsta.2014.0154

    Solar Wind Turbulence and the Role of Ion Instabilities
    journal, August 2013

    • Alexandrova, O.; Chen, C. H. K.; Sorriso-Valvo, L.
    • Space Science Reviews, Vol. 178, Issue 2-4
    • DOI: 10.1007/s11214-013-0004-8

    The multi-scale nature of the solar wind
    journal, December 2019

    • Verscharen, Daniel; Klein, Kristopher G.; Maruca, Bennett A.
    • Living Reviews in Solar Physics, Vol. 16, Issue 1
    • DOI: 10.1007/s41116-019-0021-0

    Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence
    journal, October 2017

    • Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.
    • Physics of Plasmas, Vol. 24, Issue 10
    • DOI: 10.1063/1.5001722

    Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas
    journal, May 2015

    • Matthaeus, W. H.; Wan, Minping; Servidio, S.
    • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2041
    • DOI: 10.1098/rsta.2014.0154

    Kinetic turbulence in fast three-dimensional collisionless guide-field magnetic reconnection
    journal, October 2018


    Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach
    journal, March 2018