DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Volume-Averaged Electrochemical Performance Modeling of 3D Interpenetrating Battery Electrode Architectures

Abstract

Recent advancements in micro-scale additive manufacturing techniques have created opportunities for design of novel electrode geometries that improve battery performance by deviating from the traditional layered battery design. These 3D batteries typically exhibit interpenetrating anode and cathode materials throughout the design space, but the existing well-established porous electrode theory models assume only one type of electrode is present in each battery layer. We therefore develop and demonstrate a multi-electrode volume-averaged electrochemical transport model to simulate transient discharge performance of these new interpenetrating electrode architectures. We implement the new reduced-order model in the PETSc framework and asses its accuracy by comparing predictions to corresponding mesoscale-resolved simulations that are orders of magnitude more computationally-intensive. For simple electrode designs such as alternating plates or cylinders, the volume-averaged model predicts performance within ~2% for electrode feature sizes comparable to traditional particle sizes (5-10μm) at discharge rates up to 3C. When considering more complex geometries such as minimal surface designs (i.e. gyroid, Schwarz P), we show that using calibrated characteristic diffusion lengths for each design results in errors below 3% for discharge rates up to 3C. These comparisons verify that this novel model has made reliable cell-scale simulations of interpenetrating electrode designs possible.

Authors:
ORCiD logo; ; ORCiD logo;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1564576
Alternate Identifier(s):
OSTI ID: 1570283
Report Number(s):
SAND-2019-11500J
Journal ID: ISSN 0013-4651; /jes/167/1/013507.atom
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 167 Journal Issue: 1; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Trembacki, Bradley L., Vadakkepatt, Ajay, Roberts, Scott A., and Murthy, Jayathi Y. Volume-Averaged Electrochemical Performance Modeling of 3D Interpenetrating Battery Electrode Architectures. United States: N. p., 2019. Web. doi:10.1149/2.0072001JES.
Trembacki, Bradley L., Vadakkepatt, Ajay, Roberts, Scott A., & Murthy, Jayathi Y. Volume-Averaged Electrochemical Performance Modeling of 3D Interpenetrating Battery Electrode Architectures. United States. https://doi.org/10.1149/2.0072001JES
Trembacki, Bradley L., Vadakkepatt, Ajay, Roberts, Scott A., and Murthy, Jayathi Y. Mon . "Volume-Averaged Electrochemical Performance Modeling of 3D Interpenetrating Battery Electrode Architectures". United States. https://doi.org/10.1149/2.0072001JES.
@article{osti_1564576,
title = {Volume-Averaged Electrochemical Performance Modeling of 3D Interpenetrating Battery Electrode Architectures},
author = {Trembacki, Bradley L. and Vadakkepatt, Ajay and Roberts, Scott A. and Murthy, Jayathi Y.},
abstractNote = {Recent advancements in micro-scale additive manufacturing techniques have created opportunities for design of novel electrode geometries that improve battery performance by deviating from the traditional layered battery design. These 3D batteries typically exhibit interpenetrating anode and cathode materials throughout the design space, but the existing well-established porous electrode theory models assume only one type of electrode is present in each battery layer. We therefore develop and demonstrate a multi-electrode volume-averaged electrochemical transport model to simulate transient discharge performance of these new interpenetrating electrode architectures. We implement the new reduced-order model in the PETSc framework and asses its accuracy by comparing predictions to corresponding mesoscale-resolved simulations that are orders of magnitude more computationally-intensive. For simple electrode designs such as alternating plates or cylinders, the volume-averaged model predicts performance within ~2% for electrode feature sizes comparable to traditional particle sizes (5-10μm) at discharge rates up to 3C. When considering more complex geometries such as minimal surface designs (i.e. gyroid, Schwarz P), we show that using calibrated characteristic diffusion lengths for each design results in errors below 3% for discharge rates up to 3C. These comparisons verify that this novel model has made reliable cell-scale simulations of interpenetrating electrode designs possible.},
doi = {10.1149/2.0072001JES},
journal = {Journal of the Electrochemical Society},
number = 1,
volume = 167,
place = {United States},
year = {Mon Sep 23 00:00:00 EDT 2019},
month = {Mon Sep 23 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1149/2.0072001JES

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Typical layered particle bed battery geometry. Representative discharge transport pathways are depicted for electrons (yellow), intercalated lithium (green), and lithium ions in the electrolyte (blue).

Save / Share:

Works referenced in this record:

Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells
journal, January 2007

  • Liu, G.; Zheng, H.; Simens, A. S.
  • Journal of The Electrochemical Society, Vol. 154, Issue 12
  • DOI: 10.1149/1.2792293

Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes
journal, January 2018

  • Trembacki, Bradley L.; Mistry, Aashutosh N.; Noble, David R.
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0981813jes

Review of Battery Systems for Electrically Powered Vehicles
conference, May 1968

  • Ragone, D. V.
  • Mid-Year Meeting, SAE Technical Paper Series
  • DOI: 10.4271/680453

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Mesoscale Electrochemical Performance Simulation of 3D Interpenetrating Lithium-Ion Battery Electrodes
journal, January 2019

  • Trembacki, Bradley; Duoss, Eric; Oxberry, Geoffrey
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0031906jes

Governing Equations for Transport in Porous Electrodes
journal, January 1997

  • De Vidts, Pauline
  • Journal of The Electrochemical Society, Vol. 144, Issue 4
  • DOI: 10.1149/1.1837595

The use of mathematical modeling in the design of lithium/polymer battery systems
journal, October 1995


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Modeling of lithium-ion batteries
journal, June 2003


High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes
journal, April 2013

  • Pikul, James H.; Gang Zhang, Hui; Cho, Jiung
  • Nature Communications, Vol. 4, Article No. 1732
  • DOI: 10.1038/ncomms2747

Effect of particle size on LiMnPO4 cathodes
journal, December 2007


Simulation and Optimization of the Dual Lithium Ion Insertion Cell
journal, January 1994

  • Fuller, Thomas F.
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054684

Additive Manufacturing: Rethinking Battery Design
journal, January 2016


Efficient Macro-Micro Scale Coupled Modeling of Batteries
journal, January 2005

  • Subramanian, Venkat R.; Diwakar, Vinten D.; Tapriyal, Deepak
  • Journal of The Electrochemical Society, Vol. 152, Issue 10
  • DOI: 10.1149/1.2032427

Thermal-Electrochemical Modeling of Battery Systems
journal, January 2000

  • Gu, W. B.; Wang, C. Y.
  • Journal of The Electrochemical Society, Vol. 147, Issue 8
  • DOI: 10.1149/1.1393625

Materials Challenges and Opportunities of Lithium Ion Batteries
journal, January 2011

  • Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015422

Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles
journal, September 2006


Fabrication of High-Aspect-Ratio Electrode Arrays for Three-Dimensional Microbatteries
journal, August 2007

  • Chamran, Fardad; Yeh, Yuting; Min, Hong-Seok
  • Journal of Microelectromechanical Systems, Vol. 16, Issue 4
  • DOI: 10.1109/JMEMS.2007.901638

Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries
journal, August 2001

  • Wohlgemuth, Meinhard; Yufa, Nataliya; Hoffman, James
  • Macromolecules, Vol. 34, Issue 17
  • DOI: 10.1021/ma0019499

3D Printing of Interdigitated Li-Ion Microbattery Architectures
journal, June 2013

  • Sun, Ke; Wei, Teng-Sing; Ahn, Bok Yeop
  • Advanced Materials, Vol. 25, Issue 33, p. 4539-4543
  • DOI: 10.1002/adma.201301036

High Energy Density All-Solid-State Batteries: A Challenging Concept Towards 3D Integration
journal, April 2008

  • Baggetto, Loıc; Niessen, Rogier A. H.; Roozeboom, Fred
  • Advanced Functional Materials, Vol. 18, Issue 7
  • DOI: 10.1002/adfm.200701245

Oxide-Ion Electrolytes
journal, August 2003


Mathematical modeling of lithium-ion and nickel battery systems
journal, August 2002

  • Gomadam, Parthasarathy M.; Weidner, John W.; Dougal, Roger A.
  • Journal of Power Sources, Vol. 110, Issue 2, p. 267-284
  • DOI: 10.1016/S0378-7753(02)00190-8

Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD
journal, January 2017

  • Kim, Gi-Heon; Smith, Kandler; Lawrence-Simon, Jake
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.0571706jes

Micro-Scale Modeling of Li-Ion Batteries: Parameterization and Validation
journal, January 2012

  • Less, G. B.; Seo, J. H.; Han, S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.096205jes

Insights Into Lithium-Ion Battery Degradation and Safety Mechanisms From Mesoscale Simulations Using Experimentally Reconstructed Mesostructures
journal, August 2016

  • Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 13, Issue 3
  • DOI: 10.1115/1.4034410

Porous-electrode theory with battery applications
journal, January 1975


Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells
journal, January 1998

  • Wang, C. Y.
  • Journal of The Electrochemical Society, Vol. 145, Issue 10
  • DOI: 10.1149/1.1838820

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models
journal, January 2010

  • Ramadesigan, Venkatasailanathan; Boovaragavan, Vijayasekaran; Pirkle, J. Carl
  • Journal of The Electrochemical Society, Vol. 157, Issue 7
  • DOI: 10.1149/1.3425622

Three-dimensional electrodes and battery architectures
journal, July 2011

  • Arthur, Timothy S.; Bates, Daniel J.; Cirigliano, Nicolas
  • MRS Bulletin, Vol. 36, Issue 7
  • DOI: 10.1557/mrs.2011.156

Correlationship between electrode mechanics and long-term cycling performance for graphite anode in lithium ion cells
journal, November 2012


Critical Role of Polymeric Binders on the Electronic Transport Properties of Composites Electrode
journal, January 2006

  • Guy, D.; Lestriez, B.; Bouchet, R.
  • Journal of The Electrochemical Society, Vol. 153, Issue 4
  • DOI: 10.1149/1.2168049

Mesoscale modeling in electrochemical devices—A critical perspective
journal, March 2019


Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells
journal, January 1996

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 143, Issue 6
  • DOI: 10.1149/1.1836921

Mesoscale Effective Property Simulations Incorporating Conductive Binder
journal, January 2017

  • Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0601711jes

Multifunctional Composites: Optimizing Microstructures for Simultaneous Transport of Heat and Electricity
journal, December 2002


Three-Dimensional Battery Architectures
journal, October 2004

  • Long, Jeffrey W.; Dunn, Bruce; Rolison, Debra R.
  • Chemical Reviews, Vol. 104, Issue 10, p. 4463-4492
  • DOI: 10.1021/cr020740l

A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries
journal, September 2016


3D printed functional nanomaterials for electrochemical energy storage
journal, August 2017


Modeling for the scale-up of a lithium-ion polymer battery
journal, April 2009


Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Cathode Performance as a Function of Inactive Material and Void Fractions
journal, January 2010

  • Zheng, Honghe; Liu, Gao; Song, Xiangyun
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3459878

3-D Microbatteries
journal, February 2003


Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing
journal, April 2017


Thermoelectric effects in electrochemical systems
journal, October 1995

  • Newman, John
  • Industrial & Engineering Chemistry Research, Vol. 34, Issue 10
  • DOI: 10.1021/ie00037a005

Heat conduction in multiphase systems—I
journal, January 1985


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Overcharge Performance of 3,7-Bis(trifluoromethyl)- N -ethylphenothiazine at High Concentration in Lithium-Ion Batteries
journal, October 2015

  • Kaur, Aman Preet; Elliott, Corrine F.; Ergun, Selin
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0951514jes

Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries
book, January 1997

  • Balay, Satish; Gropp, William D.; McInnes, Lois Curfman
  • Modern Software Tools for Scientific Computing
  • DOI: 10.1007/978-1-4612-1986-6_8

Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials
journal, May 2010


Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Modelling electrode material utilization in the trench model 3D-microbattery by finite element analysis
journal, September 2010


Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery
journal, April 2008


Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
journal, January 2018

  • Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 7
  • DOI: 10.1021/acsami.7b17771

Structural Optimization of 3D Porous Electrodes for High-Rate Performance Lithium Ion Batteries
journal, December 2014

  • Ye, Jianchao; Baumgaertel, Andreas C.; Wang, Y. Morris
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn505490u

Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling
journal, August 2002