DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer

Abstract

Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year. To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1564441
Alternate Identifier(s):
OSTI ID: 1570232
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Metabolic Engineering Communications
Additional Journal Information:
Journal Name: Metabolic Engineering Communications Journal Volume: 9 Journal Issue: C; Journal ID: ISSN 2214-0301
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Thompson, Mitchell G., Valencia, Luis E., Blake-Hedges, Jacquelyn M., Cruz-Morales, Pablo, Velasquez, Alexandria E., Pearson, Allison N., Sermeno, Lauren N., Sharpless, William A., Benites, Veronica T., Chen, Yan, Baidoo, Edward E. K., Petzold, Christopher J., Deutschbauer, Adam M., and Keasling, Jay D. Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer. Netherlands: N. p., 2019. Web. doi:10.1016/j.mec.2019.e00098.
Thompson, Mitchell G., Valencia, Luis E., Blake-Hedges, Jacquelyn M., Cruz-Morales, Pablo, Velasquez, Alexandria E., Pearson, Allison N., Sermeno, Lauren N., Sharpless, William A., Benites, Veronica T., Chen, Yan, Baidoo, Edward E. K., Petzold, Christopher J., Deutschbauer, Adam M., & Keasling, Jay D. Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer. Netherlands. https://doi.org/10.1016/j.mec.2019.e00098
Thompson, Mitchell G., Valencia, Luis E., Blake-Hedges, Jacquelyn M., Cruz-Morales, Pablo, Velasquez, Alexandria E., Pearson, Allison N., Sermeno, Lauren N., Sharpless, William A., Benites, Veronica T., Chen, Yan, Baidoo, Edward E. K., Petzold, Christopher J., Deutschbauer, Adam M., and Keasling, Jay D. Sun . "Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer". Netherlands. https://doi.org/10.1016/j.mec.2019.e00098.
@article{osti_1564441,
title = {Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer},
author = {Thompson, Mitchell G. and Valencia, Luis E. and Blake-Hedges, Jacquelyn M. and Cruz-Morales, Pablo and Velasquez, Alexandria E. and Pearson, Allison N. and Sermeno, Lauren N. and Sharpless, William A. and Benites, Veronica T. and Chen, Yan and Baidoo, Edward E. K. and Petzold, Christopher J. and Deutschbauer, Adam M. and Keasling, Jay D.},
abstractNote = {Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year. To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.},
doi = {10.1016/j.mec.2019.e00098},
journal = {Metabolic Engineering Communications},
number = C,
volume = 9,
place = {Netherlands},
year = {Sun Dec 01 00:00:00 EST 2019},
month = {Sun Dec 01 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.mec.2019.e00098

Figures / Tables:

Figure 1 Figure 1: Identification of the P. putida valerolactam hydrolase: (A) Route of valerolactam catabolism through the L-lysine catabolic route of P. putida (B) Growth of P. putida in minimal medium supplemented with either 10mM glucose, 5AVA, or valerolactam. Shaded area represents the 95% confidence interval (cI), n = 3. Maximalmore » growth rates (1/hr) were 0.29 on glucose, 0.29 on 5AVA, and 0.21 on valerolactam. (C) RB-TnSeq analysis of genome fitness assays of P. putida libraries grown on either 5AVA or valerolactam as a sole carbon source. Red oval shows the predicted fitness result of a valerolactam hydrolase. (D) Results of shotgun proteomics of proteins found in the supernatant of P. putida grown on either 10mM glucose or 10mM valerolactam as a sole carbon source. Venn diagram shows the number of proteins with an exponentially modified protein abundance index (emPAI) relative abundance above 0.1 shared or unique to each carbon source (E) Table shows the most abundant proteins specific to grown on valerolactam. OplA (Q88H50_PSEPK) and OplB (Q88H51_PSEPK) are in bold.« less

Save / Share:

Works referenced in this record:

Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost
journal, March 2017

  • Ravi, Krithika; García-Hidalgo, Javier; Gorwa-Grauslund, Marie F.
  • Applied Microbiology and Biotechnology, Vol. 101, Issue 12
  • DOI: 10.1007/s00253-017-8211-y

Standard Flow Liquid Chromatography for Shotgun Proteomics in Bioenergy Research
journal, April 2015

  • González Fernández-Niño, Susana M.; Smith-Moritz, A. Michelle; Chan, Leanne Jade G.
  • Frontiers in Bioengineering and Biotechnology, Vol. 3
  • DOI: 10.3389/fbioe.2015.00044

Mutant phenotypes for thousands of bacterial genes of unknown function
journal, May 2018


Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks
journal, January 2019

  • Baral, Nawa Raj; Kavvada, Olga; Mendez-Perez, Daniel
  • Energy & Environmental Science, Vol. 12, Issue 3
  • DOI: 10.1039/C8EE03266A

Pseudomonas putida—a versatile host for the production of natural products
journal, June 2015


Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways
journal, September 2015

  • Nikel, Pablo I.; Chavarría, Max; Fuhrer, Tobias
  • Journal of Biological Chemistry, Vol. 290, Issue 43
  • DOI: 10.1074/jbc.M115.687749

ModelFinder: fast model selection for accurate phylogenetic estimates
journal, May 2017

  • Kalyaanamoorthy, Subha; Minh, Bui Quang; Wong, Thomas K. F.
  • Nature Methods, Vol. 14, Issue 6
  • DOI: 10.1038/nmeth.4285

Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
journal, June 1990

  • Grant, S. G.; Jessee, J.; Bloom, F. R.
  • Proceedings of the National Academy of Sciences, Vol. 87, Issue 12
  • DOI: 10.1073/pnas.87.12.4645

A metabolic pathway for catabolizing levulinic acid in bacteria
journal, September 2017

  • Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.
  • Nature Microbiology, Vol. 2, Issue 12
  • DOI: 10.1038/s41564-017-0028-z

j5 DNA Assembly Design Automation Software
journal, December 2011

  • Hillson, Nathan J.; Rosengarten, Rafael D.; Keasling, Jay D.
  • ACS Synthetic Biology, Vol. 1, Issue 1, p. 14-21
  • DOI: 10.1021/sb2000116

New yeast recombineering tools for bacteria
journal, September 2009


A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids
journal, April 1984


Interaction of the protein components of 5-oxoprolinase. Substrate-dependent enzyme complex formation.
journal, May 1988


Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in Pseudomonas putida Lysine Metabolism
journal, May 2019

  • Thompson, Mitchell G.; Blake-Hedges, Jacquelyn M.; Cruz-Morales, Pablo
  • mBio, Vol. 10, Issue 3
  • DOI: 10.1128/mBio.02577-18

Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits
journal, July 2017

  • Cruz-Morales, Pablo; Ramos-Aboites, Hilda E.; Licona-Cassani, Cuauhtémoc
  • FEMS Microbiology Ecology, Vol. 93, Issue 9
  • DOI: 10.1093/femsec/fix086

DeviceEditor visual biological CAD canvas
journal, December 2012

  • Chen, Joanna; Densmore, Douglas; Ham, Timothy S.
  • Journal of Biological Engineering, Vol. 6, Issue 1
  • DOI: 10.1186/1754-1611-6-1

Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons
journal, May 2015

  • Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.
  • mBio, Vol. 6, Issue 3, Article No. e00306-15
  • DOI: 10.1128/mBio.00306-15

The metabolic versatility of pseudomonads
journal, January 1982


A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products
journal, November 2019


Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools
journal, June 2012

  • Ham, T. S.; Dmytriv, Z.; Plahar, H.
  • Nucleic Acids Research, Vol. 40, Issue 18
  • DOI: 10.1093/nar/gks531

Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams
journal, May 2017


Lysine overproducing Corynebacterium glutamicum is characterized by a robust linear combination of two optimal phenotypic states
journal, April 2013

  • Rajvanshi, Meghna; Gayen, Kalyan; Venkatesh, K. V.
  • Systems and Synthetic Biology, Vol. 7, Issue 1-2
  • DOI: 10.1007/s11693-013-9107-5

Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production
journal, January 2013


The NumPy Array: A Structure for Efficient Numerical Computation
journal, March 2011

  • van der Walt, Stéfan; Colbert, S. Chris; Varoquaux, Gaël
  • Computing in Science & Engineering, Vol. 13, Issue 2
  • DOI: 10.1109/MCSE.2011.37

The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis : Re-annotation of the Pseudomonas putida KT2440 genome
journal, April 2016

  • Belda, Eugeni; van Heck, Ruben G. A.; José Lopez-Sanchez, Maria
  • Environmental Microbiology, Vol. 18, Issue 10
  • DOI: 10.1111/1462-2920.13230

A One Pot, One Step, Precision Cloning Method with High Throughput Capability
journal, November 2008


Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion
journal, August 2017

  • Rodriguez, Alberto; Salvachúa, Davinia; Katahira, Rui
  • ACS Sustainable Chemistry & Engineering, Vol. 5, Issue 9
  • DOI: 10.1021/acssuschemeng.7b01818

Enzymatic assembly of DNA molecules up to several hundred kilobases
journal, April 2009

  • Gibson, Daniel G.; Young, Lei; Chuang, Ray-Yuan
  • Nature Methods, Vol. 6, Issue 5, p. 343-345
  • DOI: 10.1038/nmeth.1318

Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis
journal, February 2017


From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida
journal, May 2018


Analysis and Manipulation of Aspartate Pathway Genes for l-Lysine Overproduction from Methanol by Bacillus methanolicus
journal, July 2011

  • Nærdal, Ingemar; Netzer, Roman; Ellingsen, Trond E.
  • Applied and Environmental Microbiology, Vol. 77, Issue 17
  • DOI: 10.1128/AEM.05093-11

Characterization of the caprolactam degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics
journal, May 2018

  • Otzen, Marleen; Palacio, Cyntia; Janssen, Dick B.
  • Applied Microbiology and Biotechnology, Vol. 102, Issue 15
  • DOI: 10.1007/s00253-018-9073-7

Works referencing / citing this record:

Catabolism of biogenic amines in Pseudomonas species
journal, April 2020


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.