skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Emerging inorganic solar cell efficiency tables (Version 1)

Abstract

This paper presents the Efficiency Tables of materials considered as emerging inorganic absorbers for photovoltaic solar cell technologies. The materials collected in these Tables are selected based on their progress in recent years, and their demonstrated potential as future photovoltaic absorbers. The first part of the paper consists of the guidelines for the inclusion of the different technologies in this paper, the verification means used by the authors, and recommendation for measurement best practices. The second part details the highest world-class certified solar cell efficiencies, and the highest non-certified cases (some independently confirmed). The third part highlights the new entries including the record efficiencies, as well as new materials included in this version of the Tables. The final part is dedicated to review a specific aspect of materials research that the authors consider of high relevance for the scientific community. In this version of the Efficiency Tables, we are including an overview of the latest progress in theoretical methods for modelling of new photovoltaic absorber materials expected to be synthesized and confirmed in the near future. We hope that this Emerging Inorganic Solar Cell Efficiency Tables (Version 1) paper, as well as its future versions, will advance the field ofmore » emerging photovoltaic solar cells by summarizing the progress to date and outlining the future promising research directions.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5];  [6]; ORCiD logo [7]
  1. Nanyang Technological Univ. (Singapore)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Univ. of Liverpool (United Kingdom)
  4. Univ. of New South Wales, Sydney, NSW (Australia)
  5. Imperial College, London (United Kingdom); Yonsei Univ., Seoul (Korea)
  6. IBM, Yorktown Heights, NY (United States). Thomas J. Watson Research Center
  7. Catalonia Inst. for Energy Research (IREC), Barcelona (Spain)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1564393
Alternate Identifier(s):
OSTI ID: 1526201
Report Number(s):
NREL/JA-5K00-73616
Journal ID: ISSN 2515-7655
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Published Article
Journal Name:
Journal of Physics: Energy
Additional Journal Information:
Journal Volume: 1; Journal Issue: 3; Journal ID: ISSN 2515-7655
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; thin film inorganic photovoltaics; emerging photovoltaic technologies; conversion efficiency; solar energy

Citation Formats

Wong, Lydia H., Zakutayev, Andriy, Major, Jonathan D., Hao, Xiaojing, Walsh, Aron, Todorov, Teodor K., and Saucedo, Edgardo. Emerging inorganic solar cell efficiency tables (Version 1). United States: N. p., 2019. Web. doi:10.1088/2515-7655/ab2338.
Wong, Lydia H., Zakutayev, Andriy, Major, Jonathan D., Hao, Xiaojing, Walsh, Aron, Todorov, Teodor K., & Saucedo, Edgardo. Emerging inorganic solar cell efficiency tables (Version 1). United States. doi:10.1088/2515-7655/ab2338.
Wong, Lydia H., Zakutayev, Andriy, Major, Jonathan D., Hao, Xiaojing, Walsh, Aron, Todorov, Teodor K., and Saucedo, Edgardo. Mon . "Emerging inorganic solar cell efficiency tables (Version 1)". United States. doi:10.1088/2515-7655/ab2338.
@article{osti_1564393,
title = {Emerging inorganic solar cell efficiency tables (Version 1)},
author = {Wong, Lydia H. and Zakutayev, Andriy and Major, Jonathan D. and Hao, Xiaojing and Walsh, Aron and Todorov, Teodor K. and Saucedo, Edgardo},
abstractNote = {This paper presents the Efficiency Tables of materials considered as emerging inorganic absorbers for photovoltaic solar cell technologies. The materials collected in these Tables are selected based on their progress in recent years, and their demonstrated potential as future photovoltaic absorbers. The first part of the paper consists of the guidelines for the inclusion of the different technologies in this paper, the verification means used by the authors, and recommendation for measurement best practices. The second part details the highest world-class certified solar cell efficiencies, and the highest non-certified cases (some independently confirmed). The third part highlights the new entries including the record efficiencies, as well as new materials included in this version of the Tables. The final part is dedicated to review a specific aspect of materials research that the authors consider of high relevance for the scientific community. In this version of the Efficiency Tables, we are including an overview of the latest progress in theoretical methods for modelling of new photovoltaic absorber materials expected to be synthesized and confirmed in the near future. We hope that this Emerging Inorganic Solar Cell Efficiency Tables (Version 1) paper, as well as its future versions, will advance the field of emerging photovoltaic solar cells by summarizing the progress to date and outlining the future promising research directions.},
doi = {10.1088/2515-7655/ab2338},
journal = {Journal of Physics: Energy},
number = 3,
volume = 1,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1088/2515-7655/ab2338

Save / Share:

Works referenced in this record:

Solar cell efficiency tables (Version 53)
journal, December 2018

  • Green, Martin A.; Hishikawa, Yoshihiro; Dunlop, Ewan D.
  • Progress in Photovoltaics: Research and Applications, Vol. 27, Issue 1
  • DOI: 10.1002/pip.3102

9.2%-efficient core-shell structured antimony selenide nanorod array solar cells
journal, January 2019


Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment
journal, July 2018


Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency
journal, November 2013

  • Wang, Wei; Winkler, Mark T.; Gunawan, Oki
  • Advanced Energy Materials, Vol. 4, Issue 7, Article No. 1301465
  • DOI: 10.1002/aenm.201301465

Cu 2 ZnSnSe 4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length
journal, December 2014

  • Lee, Yun Seog; Gershon, Talia; Gunawan, Oki
  • Advanced Energy Materials, Vol. 5, Issue 7
  • DOI: 10.1002/aenm.201401372

Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open-Circuit Voltage in Cuprous Oxide Solar Cells
journal, May 2014

  • Lee, Yun Seog; Chua, Danny; Brandt, Riley E.
  • Advanced Materials, Vol. 26, Issue 27
  • DOI: 10.1002/adma.201401054

Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
journal, October 2017

  • Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.
  • Science Advances, Vol. 3, Issue 10
  • DOI: 10.1126/sciadv.aao4204

Overcoming Efficiency Limitations of SnS-Based Solar Cells
journal, June 2014

  • Sinsermsuksakul, Prasert; Sun, Leizhi; Lee, Sang Woon
  • Advanced Energy Materials, Vol. 4, Issue 15
  • DOI: 10.1002/aenm.201400496

Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency
journal, June 2018


Direct solution deposition of device quality Sb2S3-xSex films for high efficiency solar cells
journal, August 2018


Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals
journal, June 2016

  • Bernechea, María; Miller, Nichole Cates; Xercavins, Guillem
  • Nature Photonics, Vol. 10, Issue 8
  • DOI: 10.1038/nphoton.2016.108

Polycrystalline Zn 3 P 2 Schottky barrier solar cells
journal, January 1981

  • Bhushan, M.; Catalano, A.
  • Applied Physics Letters, Vol. 38, Issue 1
  • DOI: 10.1063/1.92124

Trade-Offs in Thin Film Solar Cells with Layered Chalcostibite Photovoltaic Absorbers
journal, January 2017

  • Welch, Adam W.; Baranowski, Lauryn L.; Peng, Haowei
  • Advanced Energy Materials, Vol. 7, Issue 11
  • DOI: 10.1002/aenm.201601935

Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks
journal, July 2016


Cation Substitution of Solution-Processed Cu 2 ZnSnS 4 Thin Film Solar Cell with over 9% Efficiency
journal, July 2015

  • Su, Zhenghua; Tan, Joel Ming Rui; Li, Xianglin
  • Advanced Energy Materials, Vol. 5, Issue 19
  • DOI: 10.1002/aenm.201500682

How small amounts of Ge modify the formation pathways and crystallization of kesterites
journal, January 2018

  • Giraldo, S.; Saucedo, E.; Neuschitzer, M.
  • Energy & Environmental Science, Vol. 11, Issue 3
  • DOI: 10.1039/C7EE02318A

Solution-Processed Trigonal Cu 2 BaSnS 4 Thin-Film Solar Cells
journal, June 2018

  • Chen, Zhu; Sun, Kaiwen; Su, Zhenghua
  • ACS Applied Energy Materials, Vol. 1, Issue 7
  • DOI: 10.1021/acsaem.8b00514

Oxygenated CdS Buffer Layers Enabling High Open‐Circuit Voltages in Earth‐Abundant Cu 2 BaSnS 4 Thin‐Film Solar Cells
journal, December 2016

  • Ge, Jie; Koirala, Prakash; Grice, Corey R.
  • Advanced Energy Materials, Vol. 7, Issue 6
  • DOI: 10.1002/aenm.201601803

A solution approach to p-type Cu2FeSnS4 thin-films and pn-junction solar cells: Role of electron selective materials on their performance
journal, February 2017


Solution-processed Cu2CdSn(S,Se)4 thin film solar cells
journal, February 2015


Earth-Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu 2 BaSn(S,Se) 4 Absorber
journal, April 2017


Evaluation of different buffer materials for solar cells with wide-gap Cu 2 ZnGeS x Se 4−x absorbers
journal, January 2017

  • Schnabel, T.; Seboui, M.; Bauer, A.
  • RSC Advances, Vol. 7, Issue 64
  • DOI: 10.1039/C7RA06438A

7.6% CZGSe Solar Cells Thanks to Optimized CdS Chemical Bath Deposition
journal, May 2018

  • Choubrac, Leo; Brammertz, Guy; Barreau, Nicolas
  • physica status solidi (a), Vol. 215, Issue 13
  • DOI: 10.1002/pssa.201800043

Photovoltaic Device with over 5% Efficiency Based on an n-Type Ag 2 ZnSnSe 4 Absorber
journal, August 2016

  • Gershon, Talia; Sardashti, Kasra; Gunawan, Oki
  • Advanced Energy Materials, Vol. 6, Issue 22
  • DOI: 10.1002/aenm.201601182

Beyond 11% Efficient Sulfide Kesterite Cu 2 Zn x Cd 1– x SnS 4 Solar Cell: Effects of Cadmium Alloying
journal, March 2017


Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu,Ag) 2 ZnSn(S,Se) 4 solar cells
journal, January 2017

  • Qi, Ya-Fang; Kou, Dong-Xing; Zhou, Wen-Hui
  • Energy & Environmental Science, Vol. 10, Issue 11
  • DOI: 10.1039/C7EE01405H

Synergistic Effects of Double Cation Substitution in Solution-Processed CZTS Solar Cells with over 10% Efficiency
journal, October 2018

  • Hadke, Shreyash H.; Levcenko, Sergiu; Lie, Stener
  • Advanced Energy Materials, Vol. 8, Issue 32
  • DOI: 10.1002/aenm.201802540

Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency
journal, September 2016

  • Kim, Shinho; Kim, Kang Min; Tampo, Hitoshi
  • Applied Physics Express, Vol. 9, Issue 10
  • DOI: 10.7567/APEX.9.102301

High-Efficiency (Li x Cu 1− x ) 2 ZnSn(S,Se) 4 Kesterite Solar Cells with Lithium Alloying
journal, October 2018

  • Cabas-Vidani, Antonio; Haass, Stefan G.; Andres, Christian
  • Advanced Energy Materials, Vol. 8, Issue 34
  • DOI: 10.1002/aenm.201801191

High-Efficiency Cu 2 O-Based Heterojunction Solar Cells Fabricated Using a Ga 2 O 3 Thin Film as N-Type Layer
journal, April 2013

  • Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro
  • Applied Physics Express, Vol. 6, Issue 4
  • DOI: 10.7567/APEX.6.044101

Bandgap tuning of multiferroic oxide solar cells
journal, November 2014


Pulse laser deposition fabricated InP/Al-ZnO heterojunction solar cells with efficiency enhanced by an i-ZnO interlayer
journal, September 2015


InGaN/GaN multiple quantum well concentrator solar cells
journal, August 2010

  • Dahal, R.; Li, J.; Aryal, K.
  • Applied Physics Letters, Vol. 97, Issue 7
  • DOI: 10.1063/1.3481424

Band Offset Engineering in ZnSnN 2 -Based Heterojunction for Low-Cost Solar Cells
journal, May 2018


Above 600 mV Open-Circuit Voltage BiI 3 Solar Cells
journal, July 2018


Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells
journal, June 2018


Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells
journal, January 2019


Intermolecular Exchange Boosts Efficiency of Air-Stable, Carbon-Based All-Inorganic Planar CsPbIBr 2 Perovskite Solar Cells to Over 9%
journal, September 2018

  • Zhu, Weidong; Zhang, Qianni; Chen, Dazheng
  • Advanced Energy Materials, Vol. 8, Issue 30
  • DOI: 10.1002/aenm.201802080

Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells
journal, January 2019


CsSnBr 3 , A Lead-Free Halide Perovskite for Long-Term Solar Cell Application: Insights on SnF 2 Addition
journal, October 2016


Performance Enhancement of Lead-Free Tin-Based Perovskite Solar Cells with Reducing Atmosphere-Assisted Dispersible Additive
journal, March 2017


Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material
journal, September 2017


GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation
journal, January 2017

  • Xue, Ding-Jiang; Liu, Shun-Chang; Dai, Chen-Min
  • Journal of the American Chemical Society, Vol. 139, Issue 2
  • DOI: 10.1021/jacs.6b11705

Highly Improved Sb 2 S 3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy
journal, March 2014

  • Choi, Yong Chan; Lee, Dong Uk; Noh, Jun Hong
  • Advanced Functional Materials, Vol. 24, Issue 23
  • DOI: 10.1002/adfm.201304238

Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb 2 (S x /Se 1- x ) 3 Graded-Composition Sensitizers
journal, January 2014

  • Choi, Yong Chan; Lee, Yong Hui; Im, Sang Hyuk
  • Advanced Energy Materials, Vol. 4, Issue 7
  • DOI: 10.1002/aenm.201301680

Bi 2 S 3 nanowire networks as electron acceptor layers in solution-processed hybrid solar cells
journal, January 2015

  • Whittaker-Brooks, Luisa; Gao, Jia; Hailey, Anna K.
  • J. Mater. Chem. C, Vol. 3, Issue 11
  • DOI: 10.1039/C4TC02534B

Study of Cu2CdGeSe4 monograin powders synthesized by molten salt method for photovoltaic applications
journal, November 2018


Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator
journal, August 2016

  • Spanier, Jonathan E.; Fridkin, Vladimir M.; Rappe, Andrew M.
  • Nature Photonics, Vol. 10, Issue 9
  • DOI: 10.1038/nphoton.2016.143

More Light on Information [Historical]
journal, December 2015


Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review
journal, February 2019

  • Giraldo, Sergio; Jehl, Zacharie; Placidi, Marcel
  • Advanced Materials, Vol. 31, Issue 16
  • DOI: 10.1002/adma.201806692

Antimony selenide thin-film solar cells
journal, April 2016


Brief review of emerging photovoltaic absorbers
journal, April 2017


Thin Film Solar Cell Based on ZnSnN 2 /SnO Heterojunction
journal, November 2017

  • Javaid, Kashif; Yu, Jingjing; Wu, Weihua
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 12, Issue 1
  • DOI: 10.1002/pssr.201700332

High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm
journal, May 2011

  • Farrell, R. M.; Neufeld, C. J.; Cruz, S. C.
  • Applied Physics Letters, Vol. 98, Issue 20
  • DOI: 10.1063/1.3591976

How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr 3 Cells
journal, June 2015

  • Kulbak, Michael; Cahen, David; Hodes, Gary
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 13
  • DOI: 10.1021/acs.jpclett.5b00968

Inorganic caesium lead iodide perovskite solar cells
journal, January 2015

  • Eperon, Giles E.; Paternò, Giuseppe M.; Sutton, Rebecca J.
  • Journal of Materials Chemistry A, Vol. 3, Issue 39
  • DOI: 10.1039/C5TA06398A

Hole Transport Layer Free Inorganic CsPbIBr 2 Perovskite Solar Cell by Dual Source Thermal Evaporation
journal, February 2016

  • Ma, Qingshan; Huang, Shujuan; Wen, Xiaoming
  • Advanced Energy Materials, Vol. 6, Issue 7
  • DOI: 10.1002/aenm.201502202

9.13%-Efficiency and stable inorganic CsPbBr3 solar cells. Lead-free CsSnBr3-xIx quantum dots promote charge extraction
journal, September 2018


Reproducibility in density functional theory calculations of solids
journal, March 2016


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials
journal, February 2012


Exploring the PbS–Bi 2 S 3 Series for Next Generation Energy Conversion Materials
journal, May 2017


Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis
journal, June 2016

  • Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11962

Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis
journal, August 2017


Point defect engineering in thin-film solar cells
journal, June 2018


First-principles theory of nonradiative carrier capture via multiphonon emission
journal, August 2014


Lone-pair effect on carrier capture in Cu 2 ZnSnS 4 solar cells
journal, January 2019

  • Kim, Sunghyun; Park, Ji-Sang; Hood, Samantha N.
  • Journal of Materials Chemistry A, Vol. 7, Issue 6
  • DOI: 10.1039/C8TA10130B