skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on April 17, 2020

Title: Observation of room-temperature polar skyrmions

Abstract

Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO 3) n/(SrTiO 3) n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses. In this work, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations show that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.

Authors:
 [1];  [2];  [3];  [4];  [1];  [5];  [6];  [7];  [5];  [5];  [3];  [2];  [3];  [5];  [5];  [8];  [1];  [1];  [6];  [9] more »;  [10];  [7];  [9];  [3];  [7];  [2];  [2] « less
  1. Univ. of California, Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Pennsylvania State Univ., University Park, PA (United States)
  4. Luxembourg Inst. of Science and Technology (LIST), Esch/Alzette (Luxembourg)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  6. Cornell Univ., Ithaca, NY (United States)
  7. Universidad de Cantabria, Santander (Spain)
  8. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  9. Cornell Univ., Ithaca, NY (United States); Kavli Inst. at Cornell for Nanoscale Science, Ithaca, NY (United States)
  10. Luxembourg Inst. of Science and Technology (LIST), Esch/Alzette (Luxembourg); Univ. of Luxembourg, Belvaux (Luxembourg)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Science Foundation (NSF)
OSTI Identifier:
1564189
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 568; Journal Issue: 7752; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Das, S., Tang, Y. L., Hong, Z., Gonçalves, M. A. P., McCarter, M. R., Klewe, C., Nguyen, K. X., Gómez-Ortiz, F., Shafer, P., Arenholz, E., Stoica, V. A., Hsu, S. -L., Wang, B., Ophus, C., Liu, J. F., Nelson, C. T., Saremi, S., Prasad, B., Mei, A. B., Schlom, D. G., Íñiguez, J., García-Fernández, P., Muller, D. A., Chen, L. Q., Junquera, J., Martin, L. W., and Ramesh, R. Observation of room-temperature polar skyrmions. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1092-8.
Das, S., Tang, Y. L., Hong, Z., Gonçalves, M. A. P., McCarter, M. R., Klewe, C., Nguyen, K. X., Gómez-Ortiz, F., Shafer, P., Arenholz, E., Stoica, V. A., Hsu, S. -L., Wang, B., Ophus, C., Liu, J. F., Nelson, C. T., Saremi, S., Prasad, B., Mei, A. B., Schlom, D. G., Íñiguez, J., García-Fernández, P., Muller, D. A., Chen, L. Q., Junquera, J., Martin, L. W., & Ramesh, R. Observation of room-temperature polar skyrmions. United States. doi:10.1038/s41586-019-1092-8.
Das, S., Tang, Y. L., Hong, Z., Gonçalves, M. A. P., McCarter, M. R., Klewe, C., Nguyen, K. X., Gómez-Ortiz, F., Shafer, P., Arenholz, E., Stoica, V. A., Hsu, S. -L., Wang, B., Ophus, C., Liu, J. F., Nelson, C. T., Saremi, S., Prasad, B., Mei, A. B., Schlom, D. G., Íñiguez, J., García-Fernández, P., Muller, D. A., Chen, L. Q., Junquera, J., Martin, L. W., and Ramesh, R. Wed . "Observation of room-temperature polar skyrmions". United States. doi:10.1038/s41586-019-1092-8.
@article{osti_1564189,
title = {Observation of room-temperature polar skyrmions},
author = {Das, S. and Tang, Y. L. and Hong, Z. and Gonçalves, M. A. P. and McCarter, M. R. and Klewe, C. and Nguyen, K. X. and Gómez-Ortiz, F. and Shafer, P. and Arenholz, E. and Stoica, V. A. and Hsu, S. -L. and Wang, B. and Ophus, C. and Liu, J. F. and Nelson, C. T. and Saremi, S. and Prasad, B. and Mei, A. B. and Schlom, D. G. and Íñiguez, J. and García-Fernández, P. and Muller, D. A. and Chen, L. Q. and Junquera, J. and Martin, L. W. and Ramesh, R.},
abstractNote = {Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO3)n/(SrTiO3)n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses. In this work, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations show that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.},
doi = {10.1038/s41586-019-1092-8},
journal = {Nature (London)},
number = 7752,
volume = 568,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on April 17, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ferroelectricity in Ultrathin Perovskite Films
journal, June 2004

  • Fong, Dillon D.; Stephenson, G. Brian; Streiffer, Stephen K.
  • Science, Vol. 304, Issue 5677, p. 1650-1653
  • DOI: 10.1126/science.1098252

Spontaneous skyrmion ground states in magnetic metals
journal, August 2006

  • Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C.
  • Nature, Vol. 442, Issue 7104, p. 797-801
  • DOI: 10.1038/nature05056

Magnetic Domain-Wall Racetrack Memory
journal, April 2008