skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on July 1, 2020

Title: Direct observation of permafrost degradation and rapid soil carbon loss in tundra

Abstract

Evidence indicates that 5–15% of the vast pool of soil carbon stored in northern permafrost ecosystems could be emitted as greenhouse gases by 2100 under the current path of global warming. Yet, direct measurements of changes in soil carbon remain scarce, largely because ground subsidence that occurs as the permafrost soils begin to thaw confounds the traditional quantification of carbon pools based on fixed depths or soil horizons. This issue is overcome when carbon is quantified in relation to a fixed ash content, which uses the relatively stable mineral component of soil as a metric for pool comparisons through time. We applied this approach to directly measure soil carbon pool changes over five years in experimentally warmed and ambient tundra ecosystems at a site in Alaska where permafrost is degrading due to climate change. We show a loss of soil carbon of 5.4% per year (95% confidence interval: 1.0, 9.5) across the site. Our findings point to lateral hydrological export as a potential pathway for these surprisingly large losses. This research highlights the potential to make repeat soil carbon pool measurements at sentinel sites across the permafrost region, as this feedback to climate change may be occurring faster than previouslymore » thought.« less

Authors:
ORCiD logo [1];  [2];  [3];  [2];  [3]; ORCiD logo [4];  [5]; ORCiD logo [2]; ORCiD logo [6]; ORCiD logo [7];  [2];  [3]; ORCiD logo [2]
  1. Northern Arizona Univ., Flagstaff, AZ (United States); Universidad Rey Juan Carlos, Móstoles (Spain); Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain)
  2. Northern Arizona Univ., Flagstaff, AZ (United States)
  3. Univ. of Florida, Gainesville, FL (United States)
  4. Univ. of Florida, Gainesville, FL (United States); Washington Univ., St. Louis, MO (United States)
  5. Univ. of Florida, Gainesville, FL (United States); Dartmouth College, Hanover, NH (United States)
  6. Univ. of Florida, Gainesville, FL (United States); Woods Hole Research Center, Falmouth, MA (United States)
  7. Univ. of Florida, Gainesville, FL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); National Science Foundation (NSF)
OSTI Identifier:
1564186
Grant/Contract Number:  
AC05-00OR22725; SC0006982; SC0014085
Resource Type:
Accepted Manuscript
Journal Name:
Nature Geoscience
Additional Journal Information:
Journal Volume: 12; Journal Issue: 8; Journal ID: ISSN 1752-0894
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Plaza, César, Pegoraro, Elaine, Bracho, Rosvel, Celis, Gerardo, Crummer, Kathryn G., Hutchings, Jack A., Hicks Pries, Caitlin E., Mauritz, Marguerite, Natali, Susan M., Salmon, Verity G., Schädel, Christina, Webb, Elizabeth E., and Schuur, Edward A. G. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. United States: N. p., 2019. Web. doi:10.1038/s41561-019-0387-6.
Plaza, César, Pegoraro, Elaine, Bracho, Rosvel, Celis, Gerardo, Crummer, Kathryn G., Hutchings, Jack A., Hicks Pries, Caitlin E., Mauritz, Marguerite, Natali, Susan M., Salmon, Verity G., Schädel, Christina, Webb, Elizabeth E., & Schuur, Edward A. G. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. United States. doi:10.1038/s41561-019-0387-6.
Plaza, César, Pegoraro, Elaine, Bracho, Rosvel, Celis, Gerardo, Crummer, Kathryn G., Hutchings, Jack A., Hicks Pries, Caitlin E., Mauritz, Marguerite, Natali, Susan M., Salmon, Verity G., Schädel, Christina, Webb, Elizabeth E., and Schuur, Edward A. G. Mon . "Direct observation of permafrost degradation and rapid soil carbon loss in tundra". United States. doi:10.1038/s41561-019-0387-6.
@article{osti_1564186,
title = {Direct observation of permafrost degradation and rapid soil carbon loss in tundra},
author = {Plaza, César and Pegoraro, Elaine and Bracho, Rosvel and Celis, Gerardo and Crummer, Kathryn G. and Hutchings, Jack A. and Hicks Pries, Caitlin E. and Mauritz, Marguerite and Natali, Susan M. and Salmon, Verity G. and Schädel, Christina and Webb, Elizabeth E. and Schuur, Edward A. G.},
abstractNote = {Evidence indicates that 5–15% of the vast pool of soil carbon stored in northern permafrost ecosystems could be emitted as greenhouse gases by 2100 under the current path of global warming. Yet, direct measurements of changes in soil carbon remain scarce, largely because ground subsidence that occurs as the permafrost soils begin to thaw confounds the traditional quantification of carbon pools based on fixed depths or soil horizons. This issue is overcome when carbon is quantified in relation to a fixed ash content, which uses the relatively stable mineral component of soil as a metric for pool comparisons through time. We applied this approach to directly measure soil carbon pool changes over five years in experimentally warmed and ambient tundra ecosystems at a site in Alaska where permafrost is degrading due to climate change. We show a loss of soil carbon of 5.4% per year (95% confidence interval: 1.0, 9.5) across the site. Our findings point to lateral hydrological export as a potential pathway for these surprisingly large losses. This research highlights the potential to make repeat soil carbon pool measurements at sentinel sites across the permafrost region, as this feedback to climate change may be occurring faster than previously thought.},
doi = {10.1038/s41561-019-0387-6},
journal = {Nature Geoscience},
number = 8,
volume = 12,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 1, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Long-term CO2 production following permafrost thaw
journal, July 2013

  • Elberling, Bo; Michelsen, Anders; Schädel, Christina
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1955

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
journal, March 2006


Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra: WARMING OF ALASKAN TUNDRA
journal, February 2011


Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

The contentious nature of soil organic matter
journal, November 2015


Permafrost degradation stimulates carbon loss from experimentally warmed tundra
journal, March 2014

  • Natali, Susan M.; Schuur, Edward A. G.; Webb, Elizabeth E.
  • Ecology, Vol. 95, Issue 3
  • DOI: 10.1890/13-0602.1

The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska: DEEP CARBON OF SIBERIA AND ALASKA
journal, December 2013

  • Strauss, Jens; Schirrmeister, Lutz; Grosse, Guido
  • Geophysical Research Letters, Vol. 40, Issue 23
  • DOI: 10.1002/2013GL058088

Determining soil carbon stock changes: Simple bulk density corrections fail
journal, December 2009

  • Lee, Juhwan; Hopmans, Jan W.; Rolston, Dennis E.
  • Agriculture, Ecosystems & Environment, Vol. 134, Issue 3-4
  • DOI: 10.1016/j.agee.2009.07.006

Role of the soil matrix and minerals in protecting natural organic materials against biological attack
journal, July 2000


Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands
journal, October 2016

  • Jones, Miriam C.; Harden, Jennifer; O'Donnell, Jonathan
  • Global Change Biology, Vol. 23, Issue 3
  • DOI: 10.1111/gcb.13403

Importance of lateral flux and its percolation depth on organic carbon export in Arctic tundra soil: Implications from a soil leaching experiment: Changes of OC in Arctic Soil Leachate
journal, April 2017

  • Zhang, Xiaowen; Hutchings, Jack A.; Bianchi, Thomas S.
  • Journal of Geophysical Research: Biogeosciences, Vol. 122, Issue 4
  • DOI: 10.1002/2016JG003754

An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012


Nonlinear CO 2 flux response to 7 years of experimentally induced permafrost thaw
journal, March 2017

  • Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo
  • Global Change Biology, Vol. 23, Issue 9
  • DOI: 10.1111/gcb.13661

Holocene Carbon Stocks and Carbon Accumulation Rates Altered in Soils Undergoing Permafrost Thaw
journal, November 2011

  • Hicks Pries, Caitlin E.; Schuur, Edward A. G.; Crummer, K. Grace
  • Ecosystems, Vol. 15, Issue 1
  • DOI: 10.1007/s10021-011-9500-4

Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods
journal, March 2008

  • Grønlund, Arne; Hauge, Atle; Hovde, Anders
  • Nutrient Cycling in Agroecosystems, Vol. 81, Issue 2
  • DOI: 10.1007/s10705-008-9171-5

Permafrost soils and carbon cycling
journal, January 2015


Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw
journal, February 2016

  • Salmon, Verity G.; Soucy, Patrick; Mauritz, Marguerite
  • Global Change Biology, Vol. 22, Issue 5
  • DOI: 10.1111/gcb.13204

Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization
journal, September 2004

  • Mack, Michelle C.; Schuur, Edward A. G.; Bret-Harte, M. Syndonia
  • Nature, Vol. 431, Issue 7007
  • DOI: 10.1038/nature02887

Quantifying global soil carbon losses in response to warming
journal, November 2016

  • Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.
  • Nature, Vol. 540, Issue 7631
  • DOI: 10.1038/nature20150

Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood
journal, September 2002


Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis
journal, January 2000


Permafrost collapse alters soil carbon stocks, respiration, CH 4 , and N 2 O in upland tundra
journal, November 2015

  • Abbott, Benjamin W.; Jones, Jeremy B.
  • Global Change Biology, Vol. 21, Issue 12
  • DOI: 10.1111/gcb.13069

Long-term warming restructures Arctic tundra without changing net soil carbon storage
journal, May 2013

  • Sistla, Seeta A.; Moore, John C.; Simpson, Rodney T.
  • Nature, Vol. 497, Issue 7451
  • DOI: 10.1038/nature12129

Characteristics of the recent warming of permafrost in Alaska
journal, January 2007


The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
journal, November 2012

  • Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12071

Persistence of soil organic matter as an ecosystem property
journal, October 2011

  • Schmidt, Michael W. I.; Torn, Margaret S.; Abiven, Samuel
  • Nature, Vol. 478, Issue 7367
  • DOI: 10.1038/nature10386

Increased wintertime CO 2 loss as a result of sustained tundra warming : Tundra Wintertime CO
journal, February 2016

  • Webb, Elizabeth E.; Schuur, Edward A. G.; Natali, Susan M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 121, Issue 2
  • DOI: 10.1002/2014JG002795

The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
journal, May 2009

  • Schuur, Edward A. G.; Vogel, Jason G.; Crummer, Kathryn G.
  • Nature, Vol. 459, Issue 7246
  • DOI: 10.1038/nature08031

Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost: Increased plant productivity in Alaskan tundra
journal, November 2011


Conservation of soil organic matter through cryoturbation in arctic soils in Siberia
journal, January 2007

  • Kaiser, Christina; Meyer, Hildegard; Biasi, Christina
  • Journal of Geophysical Research, Vol. 112, Issue G2
  • DOI: 10.1029/2006JG000258

Fitting Linear Mixed-Effects Models Using lme4
journal, January 2015

  • Bates, Douglas; Mächler, Martin; Bolker, Ben
  • Journal of Statistical Software, Vol. 67, Issue 1
  • DOI: 10.18637/jss.v067.i01

Response of boreal ecosystems to varying modes of permafrost degradation
journal, September 2005

  • Jorgenson, M. T.; Osterkamp, T. E.
  • Canadian Journal of Forest Research, Vol. 35, Issue 9
  • DOI: 10.1139/x05-153

Comment on “Determining soil carbon stock changes: Simple bulk density corrections fail” [Agric. Ecosyst. Environ. 134 (2009) 251–256]
journal, February 2010

  • McBratney, Alex. B.; Minasny, Budiman
  • Agriculture, Ecosystems & Environment, Vol. 136, Issue 1-2
  • DOI: 10.1016/j.agee.2009.12.010

lmerTest Package: Tests in Linear Mixed Effects Models
journal, January 2017

  • Kuznetsova, Alexandra; Brockhoff, Per B.; Christensen, Rune H. B.
  • Journal of Statistical Software, Vol. 82, Issue 13
  • DOI: 10.18637/jss.v082.i13

Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327