skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 5, 2020

Title: Amazon forest response to CO 2 fertilization dependent on plant phosphorus acquisition

Abstract

Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, primarily owing to the rising atmospheric carbon dioxide (CO 2) concentration. Soil phosphorus impoverishment in parts of the Amazon basin largely controls its functioning, but the role of phosphorus availability has not been considered in global model ensembles—for example, during the Fifth Climate Model Intercomparison Project. Here we simulate the planned free-air CO 2 enrichment experiment AmazonFACE with an ensemble of 14 terrestrial ecosystem models. We show that phosphorus availability reduces the projected CO 2-induced biomass carbon growth by about 50% to 79 ± 63 g C m -2 yr -1 over 15 years compared to estimates from carbon and carbon–nitrogen models. Our results suggest that the resilience of the region to climate change may be much less than previously assumed. Variation in the biomass carbon response among the phosphorus-enabled models is considerable, ranging from 5 to 140 g C m -2 yr -1, owing to the contrasting plant phosphorus use and acquisition strategies considered among the models. The Amazon forest response thus depends on the interactions and relative contributions of the phosphorus acquisition and use strategies across individuals, andmore » to what extent these processes can be upregulated under elevated CO 2.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [5];  [10]; ORCiD logo [11];  [12];  [13];  [14];  [15]; ORCiD logo [11];  [16];  [17];  [18] more »;  [19]; ORCiD logo [20]; ORCiD logo [1];  [21];  [22];  [23] « less
  1. Technische Univ. of Munich (Germany). Land Surface–Atmosphere Interactions
  2. Univ. of Sao Paulo (Brazil). Dept. of Biology
  3. National Institute of Amazonian Research (INPA), Manaus (Brazil); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Antwerp, Antwerp (Belgium). Dept. of Biology
  4. Laboratoire des Sciences du Climat et de l’Environnement, Saint-Aubin (France); Universität Augsburg, Augsburg (Germany). Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung
  5. Western Sydney Univ., Sydney, New South Wales (Australia). Hawkesbury Inst. for the Environment
  6. CSIRO Oceans and Atmosphere, Canberra, (Australia)
  7. International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria)
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  9. The Netherlands Alterra Wageningen, Wageningen (The Netherlands)
  10. Centre for Ecology and Hydrology, Wallingford (United Kingdom); Univ. of Exeter, Exeter (United Kingdom). College of Life and Environmental Sciences
  11. ORNL
  12. CSIRO Oceans and Atmosphere Flagship, Canberra, Australia
  13. National Institute of Amazonian Research (INPA)
  14. Wageningen University, Netherlands
  15. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
  16. Max Planck Institute for Biogeochemistry
  17. Lawrence Berkeley National Laboratory (LBNL)
  18. Universidade Estadual Paulista, Rio Claro, Brazil
  19. Univ. of New South Wales, Sydney, NSW (Australia). Climate Change Research Centre; ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales (Australia)
  20. ORNL; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division and Climate Change Science Inst.
  21. National Institute of Amazonian Research (INPA), Manaus (Brazil)
  22. Univ. of Sao Paulo (Brazil). Dept. of Botany
  23. Univ. of Exeter, Exeter (United Kingdom). College of Life and Environmental Sciences; Univ. of Hong Kong (China). Inst. of Environment, Energy and Sustainability
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1564155
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Geoscience
Additional Journal Information:
Journal Volume: 12; Journal Issue: 9; Journal ID: ISSN 1752-0894
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Rammig, Anja, Domingues, Tomas, Fuchslueger, Lucia, Goll, Daniel, Jiang, Mingkai, Haverd, Vanessa, Hofhansl, Florian, Holm, Jennifer, Kruijt, Bart, Medlyn, Belinda, Mercado Montoya, Lina, Norby, Richard J., Pak, Bernard, Quesada, Carlos, Schaap, Peter J., Wang, Ying-Ping, Yang, Xiaojuan, Zaehle, S, Zhu, Qing, Lapola, David M., De Kauwe, Martin G., Walker, Anthony P., Fleischer, Katrin, Garcia, Sabrina, Grandis, Adriana, and Leung, Felix. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. United States: N. p., 2019. Web. doi:10.1038/s41561-019-0404-9.
Rammig, Anja, Domingues, Tomas, Fuchslueger, Lucia, Goll, Daniel, Jiang, Mingkai, Haverd, Vanessa, Hofhansl, Florian, Holm, Jennifer, Kruijt, Bart, Medlyn, Belinda, Mercado Montoya, Lina, Norby, Richard J., Pak, Bernard, Quesada, Carlos, Schaap, Peter J., Wang, Ying-Ping, Yang, Xiaojuan, Zaehle, S, Zhu, Qing, Lapola, David M., De Kauwe, Martin G., Walker, Anthony P., Fleischer, Katrin, Garcia, Sabrina, Grandis, Adriana, & Leung, Felix. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. United States. doi:10.1038/s41561-019-0404-9.
Rammig, Anja, Domingues, Tomas, Fuchslueger, Lucia, Goll, Daniel, Jiang, Mingkai, Haverd, Vanessa, Hofhansl, Florian, Holm, Jennifer, Kruijt, Bart, Medlyn, Belinda, Mercado Montoya, Lina, Norby, Richard J., Pak, Bernard, Quesada, Carlos, Schaap, Peter J., Wang, Ying-Ping, Yang, Xiaojuan, Zaehle, S, Zhu, Qing, Lapola, David M., De Kauwe, Martin G., Walker, Anthony P., Fleischer, Katrin, Garcia, Sabrina, Grandis, Adriana, and Leung, Felix. Mon . "Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition". United States. doi:10.1038/s41561-019-0404-9.
@article{osti_1564155,
title = {Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition},
author = {Rammig, Anja and Domingues, Tomas and Fuchslueger, Lucia and Goll, Daniel and Jiang, Mingkai and Haverd, Vanessa and Hofhansl, Florian and Holm, Jennifer and Kruijt, Bart and Medlyn, Belinda and Mercado Montoya, Lina and Norby, Richard J. and Pak, Bernard and Quesada, Carlos and Schaap, Peter J. and Wang, Ying-Ping and Yang, Xiaojuan and Zaehle, S and Zhu, Qing and Lapola, David M. and De Kauwe, Martin G. and Walker, Anthony P. and Fleischer, Katrin and Garcia, Sabrina and Grandis, Adriana and Leung, Felix},
abstractNote = {Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, primarily owing to the rising atmospheric carbon dioxide (CO2) concentration. Soil phosphorus impoverishment in parts of the Amazon basin largely controls its functioning, but the role of phosphorus availability has not been considered in global model ensembles—for example, during the Fifth Climate Model Intercomparison Project. Here we simulate the planned free-air CO2 enrichment experiment AmazonFACE with an ensemble of 14 terrestrial ecosystem models. We show that phosphorus availability reduces the projected CO2-induced biomass carbon growth by about 50% to 79 ± 63 g C m-2 yr-1 over 15 years compared to estimates from carbon and carbon–nitrogen models. Our results suggest that the resilience of the region to climate change may be much less than previously assumed. Variation in the biomass carbon response among the phosphorus-enabled models is considerable, ranging from 5 to 140 g C m-2 yr-1, owing to the contrasting plant phosphorus use and acquisition strategies considered among the models. The Amazon forest response thus depends on the interactions and relative contributions of the phosphorus acquisition and use strategies across individuals, and to what extent these processes can be upregulated under elevated CO2.},
doi = {10.1038/s41561-019-0404-9},
journal = {Nature Geoscience},
number = 9,
volume = 12,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 5, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements
journal, February 2014


Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests
journal, May 2014

  • Talhelm, Alan F.; Pregitzer, Kurt S.; Kubiske, Mark E.
  • Global Change Biology, Vol. 20, Issue 8
  • DOI: 10.1111/gcb.12564

Using ecosystem experiments to improve vegetation models
journal, May 2015

  • Medlyn, Belinda E.; Zaehle, Sönke; De Kauwe, Martin G.
  • Nature Climate Change, Vol. 5, Issue 6
  • DOI: 10.1038/nclimate2621

Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil
journal, March 2017

  • Ellsworth, David S.; Anderson, Ian C.; Crous, Kristine Y.
  • Nature Climate Change, Vol. 7, Issue 4
  • DOI: 10.1038/nclimate3235

Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils
journal, January 2009

  • Aragão, L. E. O. C.; Malhi, Y.; Metcalfe, D. B.
  • Biogeosciences, Vol. 6, Issue 12
  • DOI: 10.5194/bg-6-2759-2009

A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere
journal, January 2010


Forest response to increased disturbance in the central Amazon and comparison to western Amazonian forests
journal, January 2014


Plant nutrient-acquisition strategies change with soil age
journal, February 2008


Law Dome CO 2 , CH 4 and N 2 O ice core records extended to 2000 years BP
journal, January 2006

  • MacFarling Meure, C.; Etheridge, D.; Trudinger, C.
  • Geophysical Research Letters, Vol. 33, Issue 14
  • DOI: 10.1029/2006GL026152

Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor
journal, June 2015

  • Reed, Sasha C.; Yang, Xiaojuan; Thornton, Peter E.
  • New Phytologist, Vol. 208, Issue 2
  • DOI: 10.1111/nph.13521

Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site
journal, January 2002


Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO 2
journal, December 2013

  • Friend, Andrew D.; Lucht, Wolfgang; Rademacher, Tim T.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 9
  • DOI: 10.1073/pnas.1222477110

Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate
journal, January 2012


Pervasive phosphorus limitation of tree species but not communities in tropical forests
journal, March 2018

  • Turner, Benjamin L.; Brenes-Arguedas, Tania; Condit, Richard
  • Nature, Vol. 555, Issue 7696
  • DOI: 10.1038/nature25789

Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought
journal, July 2013

  • Powell, Thomas L.; Galbraith, David R.; Christoffersen, Bradley O.
  • New Phytologist, Vol. 200, Issue 2
  • DOI: 10.1111/nph.12390

Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways
journal, August 2011

  • Lamarque, Jean-François; Kyle, G. Page; Meinshausen, Malte
  • Climatic Change, Vol. 109, Issue 1-2
  • DOI: 10.1007/s10584-011-0155-0

Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100
journal, June 2017

  • Wang, Rong; Goll, Daniel; Balkanski, Yves
  • Global Change Biology, Vol. 23, Issue 11
  • DOI: 10.1111/gcb.13766

Recognizing Amazonian tree species in the field using bark tissues spectra
journal, November 2018

  • Hadlich, Hilana Louise; Durgante, Flávia Machado; dos Santos, Joaquim
  • Forest Ecology and Management, Vol. 427
  • DOI: 10.1016/j.foreco.2018.06.002

Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15 N: 14 N measurements
journal, September 2013


A representation of the phosphorus cycle for ORCHIDEE (revision 4520)
journal, January 2017

  • Goll, Daniel S.; Vuichard, Nicolas; Maignan, Fabienne
  • Geoscientific Model Development, Vol. 10, Issue 10
  • DOI: 10.5194/gmd-10-3745-2017

Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO 2 and climate : PHOSPHORUS AND TROPICAL CARBON CYCLE
journal, July 2016

  • Yang, Xiaojuan; Thornton, Peter E.; Ricciuto, Daniel M.
  • Geophysical Research Letters, Vol. 43, Issue 13
  • DOI: 10.1002/2016GL069241

Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate
journal, January 2009


Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7017-2010

Root structural and functional dynamics in terrestrial biosphere models - evaluation and recommendations
journal, September 2014

  • Warren, Jeffrey M.; Hanson, Paul J.; Iversen, Colleen M.
  • New Phytologist, Vol. 205, Issue 1
  • DOI: 10.1111/nph.13034

Model-data synthesis for the next generation of forest free-air CO 2 enrichment (FACE) experiments
journal, August 2015

  • Norby, Richard J.; De Kauwe, Martin G.; Domingues, Tomas F.
  • New Phytologist, Vol. 209, Issue 1
  • DOI: 10.1111/nph.13593

Soils of Amazonia with particular reference to the RAINFOR sites
journal, January 2011


Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions
journal, February 2017

  • Phillips, Oliver L.; Brienen, Roel J. W.
  • Carbon Balance and Management, Vol. 12, Article No. 1
  • DOI: 10.1186/s13021-016-0069-2

Simulated resilience of tropical rainforests to CO2-induced climate change
journal, March 2013

  • Huntingford, Chris; Zelazowski, Przemyslaw; Galbraith, David
  • Nature Geoscience, Vol. 6, Issue 4
  • DOI: 10.1038/ngeo1741

Respiration from a Tropical Forest Ecosystem: Partitioning of Sources and low Carbon use Efficiency
journal, August 2004

  • Chambers, Jeffrey Q.; Tribuzy, Edgard S.; Toledo, Ligia C.
  • Ecological Applications, Vol. 14, Issue sp4
  • DOI: 10.1890/01-6012

Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research
journal, January 2013

  • Cernusak, Lucas A.; Winter, Klaus; Dalling, James W.
  • Functional Plant Biology, Vol. 40, Issue 6
  • DOI: 10.1071/FP12309

Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer
journal, April 1991

  • Collatz, G. James; Ball, J. Timothy; Grivet, Cyril
  • Agricultural and Forest Meteorology, Vol. 54, Issue 2-4
  • DOI: 10.1016/0168-1923(91)90002-8

Natural and anthropogenic changes in atmospheric CO 2 over the last 1000 years from air in Antarctic ice and firn
journal, February 1996

  • Etheridge, D. M.; Steele, L. P.; Langenfelds, R. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D2
  • DOI: 10.1029/95JD03410

Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model
journal, January 2014


Towards a more physiological representation of vegetation phosphorus processes in land surface models
journal, February 2019

  • Jiang, Mingkai; Caldararu, Silvia; Zaehle, Sönke
  • New Phytologist, Vol. 222, Issue 3
  • DOI: 10.1111/nph.15688

High-resolution hydraulic parameter maps for surface soils in tropical South America
journal, January 2014

  • Marthews, T. R.; Quesada, C. A.; Galbraith, D. R.
  • Geoscientific Model Development, Vol. 7, Issue 3
  • DOI: 10.5194/gmd-7-711-2014

Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability
journal, February 2013

  • Cox, Peter M.; Pearson, David; Booth, Ben B.
  • Nature, Vol. 494, Issue 7437
  • DOI: 10.1038/nature11882

Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO 2 Enrichment studies
journal, January 2014

  • Zaehle, Sönke; Medlyn, Belinda E.; De Kauwe, Martin G.
  • New Phytologist, Vol. 202, Issue 3
  • DOI: 10.1111/nph.12697

Plant responses to fertilization experiments in lowland, species‐rich, tropical forests
journal, March 2018

  • Wright, S. Joseph; Turner, Benjamin L.; Yavitt, Joseph B.
  • Ecology, Vol. 99, Issue 5
  • DOI: 10.1002/ecy.2193

Predicting long-term carbon sequestration in response to CO 2 enrichment: How and why do current ecosystem models differ?
journal, April 2015

  • Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.
  • Global Biogeochemical Cycles, Vol. 29, Issue 4
  • DOI: 10.1002/2014GB004995

Long-term decline of the Amazon carbon sink
journal, March 2015

  • Brienen, R. J. W.; Phillips, O. L.; Feldpausch, T. R.
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14283

Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests
journal, February 1984


Variations in chemical and physical properties of Amazon forest soils in relation to their genesis
journal, January 2010


Fertile forests produce biomass more efficiently: Forests’ biomass production efficiency
journal, April 2012


Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED)
journal, January 2015

  • Fisher, R. A.; Muszala, S.; Verteinstein, M.
  • Geoscientific Model Development, Vol. 8, Issue 11
  • DOI: 10.5194/gmd-8-3593-2015

The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes
journal, January 2011

  • Best, M. J.; Pryor, M.; Clark, D. B.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-677-2011

CO2 enhancement of forest productivity constrained by limited nitrogen availability
journal, October 2010

  • Norby, R. J.; Warren, J. M.; Iversen, C. M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 45
  • DOI: 10.1073/pnas.1006463107

Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests
journal, May 2009


Using models to guide field experiments: a priori predictions for the CO 2 response of a nutrient- and water-limited native Eucalypt woodland
journal, May 2016

  • Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke
  • Global Change Biology, Vol. 22, Issue 8
  • DOI: 10.1111/gcb.13268

Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure
journal, September 2000

  • Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine
  • Global Biogeochemical Cycles, Vol. 14, Issue 3
  • DOI: 10.1029/1999GB001138

Drought effect on plant nitrogen and phosphorus: a meta-analysis
journal, July 2014

  • He, Mingzhu; Dijkstra, Feike A.
  • New Phytologist, Vol. 204, Issue 4
  • DOI: 10.1111/nph.12952

A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species
journal, June 1980

  • Farquhar, G. D.; von Caemmerer, S.; Berry, J. A.
  • Planta, Vol. 149, Issue 1
  • DOI: 10.1007/BF00386231

Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2
journal, January 2009

  • Medvigy, D.; Wofsy, S. C.; Munger, J. W.
  • Journal of Geophysical Research, Vol. 114, Issue G1
  • DOI: 10.1029/2008JG000812

Amazon Forest Ecosystem Responses to Elevated Atmospheric CO2 and Alterations in Nutrient Availability: Filling the Gaps with Model-Experiment Integration
journal, February 2016

  • Hofhansl, Florian; Andersen, Kelly M.; Fleischer, Katrin
  • Frontiers in Earth Science, Vol. 4
  • DOI: 10.3389/feart.2016.00019

The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP
journal, January 2014


Future productivity and carbon storage limited by terrestrial nutrient availability
journal, April 2015

  • Wieder, William R.; Cleveland, Cory C.; Smith, W. Kolby
  • Nature Geoscience, Vol. 8, Issue 6
  • DOI: 10.1038/ngeo2413

Long-Term Response of Nutrient-Limited Forests to CO"2 Enrichment; Equilibrium Behavior of Plant-Soil Models
journal, November 1993

  • Comins, H. N.; McMurtrie, R. E.
  • Ecological Applications, Vol. 3, Issue 4
  • DOI: 10.2307/1942099