skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 15, 2020

Title: Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling

Authors:
ORCiD logo [1];  [1]
  1. Department of Nuclear, Plasma, and Radiological EngineeringUniversity of Illinois at Urbana Champaign Urbana Illinois
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1563010
Grant/Contract Number:  
16-10908; NE0008573
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
International Journal of Energy Research
Additional Journal Information:
Journal Name: International Journal of Energy Research; Journal ID: ISSN 0363-907X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Radaideh, Majdi I., and Kozlowski, Tomasz. Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling. United Kingdom: N. p., 2019. Web. doi:10.1002/er.4698.
Radaideh, Majdi I., & Kozlowski, Tomasz. Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling. United Kingdom. doi:10.1002/er.4698.
Radaideh, Majdi I., and Kozlowski, Tomasz. Fri . "Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling". United Kingdom. doi:10.1002/er.4698.
@article{osti_1563010,
title = {Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling},
author = {Radaideh, Majdi I. and Kozlowski, Tomasz},
abstractNote = {},
doi = {10.1002/er.4698},
journal = {International Journal of Energy Research},
number = ,
volume = ,
place = {United Kingdom},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 15, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Hybrid reduced order modeling applied to nonlinear models: HYBRID APPLICATION OF ORDER REDUCTION METHODS
journal, July 2012

  • Bang, Youngsuk; Abdel-Khalik, Hany S.; Hite, Jason M.
  • International Journal for Numerical Methods in Engineering, Vol. 91, Issue 9
  • DOI: 10.1002/nme.4298

Coupled neutronic thermo-hydraulic analysis of full PWR core with Monte-Carlo based BGCore system
journal, September 2011


Multidimensional multiphysics simulation of nuclear fuel behavior
journal, April 2012


Nuclear data sensitivity, uncertainty and target accuracy assessment for future nuclear systems
journal, May 2006


Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

Dimensionality reducibility for multi-physics reduced order modeling
journal, December 2017


Factorial Sampling Plans for Preliminary Computational Experiments
journal, May 1991


NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) Benchmark
journal, November 2006


David Draper and E. I. George, and a rejoinder by the authors
journal, November 1999

  • Volinsky, Chris T.; Raftery, Adrian E.; Madigan, David
  • Statistical Science, Vol. 14, Issue 4
  • DOI: 10.1214/ss/1009212519

Polynomial Theory of Complex Systems
journal, October 1971


Application of implicit Roe-type scheme and Jacobian-Free Newton-Krylov method to two-phase flow problems
journal, September 2018


Loss of coolant accident analysis under restriction of reverse flow
journal, September 2019

  • Radaideh, Majdi I.; Kozlowski, Tomasz; Farawila, Yousef M.
  • Nuclear Engineering and Technology, Vol. 51, Issue 6
  • DOI: 10.1016/j.net.2019.04.016

A generalized adjoint framework for sensitivity and global error estimation in time-dependent nuclear reactor simulations
journal, February 2013


Global sensitivity analysis using polynomial chaos expansions
journal, July 2008


Phosphoric acid fuel cells: Fundamentals and applications
journal, October 2004

  • Sammes, Nigel; Bove, Roberto; Stahl, Knut
  • Current Opinion in Solid State and Materials Science, Vol. 8, Issue 5
  • DOI: 10.1016/j.cossms.2005.01.001

Adaptive sparse polynomial chaos expansion based on least angle regression
journal, March 2011


Multi-objective optimisation analysis and load matching of a phosphoric acid fuel cell system
journal, February 2012


SCALE 6: Comprehensive Nuclear Safety Analysis Code System
journal, May 2011


Rod Internal Pressure Distribution and Uncertainty Analysis Using FRAPCON
journal, January 2017

  • Bratton, Ryan N.; Jessee, Matt A.; Wieselquist, William A.
  • Nuclear Technology, Vol. 197, Issue 1
  • DOI: 10.13182/NT16-75

Challenges in coupled thermal–hydraulics and neutronics simulations for LWR safety analysis
journal, June 2007


Advanced BWR criticality safety part II: Cask criticality, burnup credit, sensitivity, and uncertainty analyses
journal, August 2019


Estimating Sobol sensitivity indices using correlations
journal, November 2012


A Statistical Sampling Method for Uncertainty Analysis with SCALE and XSUSA
journal, September 2013

  • Williams, M. L.; Ilas, G.; Jessee, M. A.
  • Nuclear Technology, Vol. 183, Issue 3
  • DOI: 10.13182/NT12-112

Validation and Uncertainty Quantification for Wall Boiling Closure Relations in Multiphase-CFD Solver
journal, September 2018


The Serpent Monte Carlo code: Status, development and applications in 2013
journal, August 2015


Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics
journal, September 2019

  • Radaideh, Majdi I.; Borowiec, Katarzyna; Kozlowski, Tomasz
  • Reliability Engineering & System Safety, Vol. 189
  • DOI: 10.1016/j.ress.2019.04.020

Data-Driven and Precursor-Group Uncertainty Propagation of Lattice Kinetic Parameters in UAM Benchmark
journal, May 2019

  • Radaideh, Majdi I.; Kozlowski, Tomasz; Wieselquist, William A.
  • Science and Technology of Nuclear Installations, Vol. 2019
  • DOI: 10.1155/2019/3702014

Advanced BWR criticality safety part I: Model development, model benchmarking, and depletion with uncertainty analysis
journal, May 2019


A Bayesian approach for quantification of model uncertainty
journal, July 2010

  • Park, Inseok; Amarchinta, Hemanth K.; Grandhi, Ramana V.
  • Reliability Engineering & System Safety, Vol. 95, Issue 7
  • DOI: 10.1016/j.ress.2010.02.015

Verification, validation, and predictive capability in computational engineering and physics
journal, September 2004

  • Oberkampf, William L.; Trucano, Timothy G.; Hirsch, Charles
  • Applied Mechanics Reviews, Vol. 57, Issue 5
  • DOI: 10.1115/1.1767847

Data-driven modeling for boiling heat transfer: Using deep neural networks and high-fidelity simulation results
journal, November 2018


Verification and validation of simulation models
journal, February 2013


Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures
journal, January 2008

  • Petruzzi, Alessandro; D'Auria, Francesco
  • Science and Technology of Nuclear Installations, Vol. 2008
  • DOI: 10.1155/2008/460795

Modern Nuclear Data Evaluation with the TALYS Code System
journal, December 2012


Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory
journal, August 2018


Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, Part 2: Application to TRACE
journal, August 2018


Review of Metamodeling Techniques in Support of Engineering Design Optimization
journal, May 2006

  • Wang, G. Gary; Shan, S.
  • Journal of Mechanical Design, Vol. 129, Issue 4
  • DOI: 10.1115/1.2429697

Efficient Subspace Methods-Based Algorithms for Performing Sensitivity, Uncertainty, and Adaptive Simulation of Large-Scale Computational Models
journal, July 2008

  • Abdel-Khalik, Hany S.; Turinsky, Paul J.; Jessee, Matthew A.
  • Nuclear Science and Engineering, Vol. 159, Issue 3
  • DOI: 10.13182/NSE159-256

Use of Kriging Models to Approximate Deterministic Computer Models
journal, April 2005

  • Martin, Jay D.; Simpson, Timothy W.
  • AIAA Journal, Vol. 43, Issue 4
  • DOI: 10.2514/1.8650

Shapley effect application for variance-based sensitivity analysis of the few-group cross-sections
journal, July 2019


Delayed-Neutron Data for Reactor-Physics Analysis
journal, January 1975


Nuclide Composition Benchmark Data Set for Verifying Burnup Codes on Spent Light Water Reactor Fuels
journal, February 2002

  • Nakahara, Yoshinori; Suyama, Kenya; Inagawa, Jun
  • Nuclear Technology, Vol. 137, Issue 2
  • DOI: 10.13182/NT02-2

Bayesian calibration of computer models
journal, August 2001

  • Kennedy, Marc C.; O'Hagan, Anthony
  • Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 63, Issue 3
  • DOI: 10.1111/1467-9868.00294

ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data
journal, December 2011


PSI Methodologies for Nuclear Data Uncertainty Propagation with CASMO-5M and MCNPX: Results for OECD/NEA UAM Benchmark Phase I
journal, January 2013

  • Wieselquist, W.; Zhu, T.; Vasiliev, A.
  • Science and Technology of Nuclear Installations, Vol. 2013
  • DOI: 10.1155/2013/549793

A roe-type numerical solver for the two-phase two-fluid six-equation model with realistic equation of state
journal, January 2018


Aleatory or epistemic? Does it matter?
journal, March 2009


Delayed Neutrons from Fissionable Isotopes of Uranium, Plutonium, and Thorium
journal, August 1957


An effective screening design for sensitivity analysis of large models
journal, October 2007

  • Campolongo, Francesca; Cariboni, Jessica; Saltelli, Andrea
  • Environmental Modelling & Software, Vol. 22, Issue 10
  • DOI: 10.1016/j.envsoft.2006.10.004

Quantification of model-form and parametric uncertainty using evidence theory
journal, November 2012


Surrogate-based methods for black-box optimization: Surrogate-based methods for black-box optimization
journal, April 2016

  • Vu, Ky Khac; D'Ambrosio, Claudia; Hamadi, Youssef
  • International Transactions in Operational Research, Vol. 24, Issue 3
  • DOI: 10.1111/itor.12292

A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters
journal, May 2019


Nuclear Data Uncertainty Quantification: Past, Present and Future
journal, January 2015


Deep learning in neural networks: An overview
journal, January 2015


A machine learning approach for efficient uncertainty quantification using multiscale methods
journal, February 2018


Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS
journal, September 2016