DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal–organic framework

Abstract

Here, the adsorption and removal of Sb(OH)6- from water using the water stable Zr6-based MOF, NU-1000, is explored. The adsorption capacity and uptake time of Sb(OH)6- in NU-1000 is measured at varying concentrations to determine an overall maximum adsorption capacity of 260 mg of Sb(OH)6- per g of MOF, corresponding to 2.5 Sb(OH)6- per node of NU-1000 and exhibiting the highest adsorption capacity of any material reported to date for Sb(V) removal. Differential pair distribution function (dPDF) analysis of total X-ray scattering data reveals that Sb(OH)6- interacts in an η2μ2 fashion with the Zr6-node of NU-1000, and that as the amount of Sb(OH)6- adsorbed increases, the interaction between the analyte and the node becomes stronger. Post-adsorption characterization shows that NU-1000 remains stable throughout the adsorption process.

Authors:
 [1];  [2];  [1];  [1];  [3];  [3];  [4]
  1. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  2. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Concordia Univ., Montreal, QC (Canada). Dept. of Chemistry and Biochemistry
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division
  4. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Chemistry and Faculty of Science
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)
OSTI Identifier:
1474406
Alternate Identifier(s):
OSTI ID: 1562992
Grant/Contract Number:  
AC02-06CH11357; AC02- 06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Polyhedron
Additional Journal Information:
Journal Volume: 151; Journal Issue: C; Journal ID: ISSN 0277-5387
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Metal–organic framework; Adsorbent; Antimony; Wastewater; Nuclear

Citation Formats

Rangwani, Sean, Howarth, Ashlee J., DeStefano, Matthew R., Malliakas, Christos D., Platero-Prats, Ana E., Chapman, Karena W., and Farha, Omar K. Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal–organic framework. United States: N. p., 2018. Web. doi:10.1016/j.poly.2018.05.021.
Rangwani, Sean, Howarth, Ashlee J., DeStefano, Matthew R., Malliakas, Christos D., Platero-Prats, Ana E., Chapman, Karena W., & Farha, Omar K. Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal–organic framework. United States. https://doi.org/10.1016/j.poly.2018.05.021
Rangwani, Sean, Howarth, Ashlee J., DeStefano, Matthew R., Malliakas, Christos D., Platero-Prats, Ana E., Chapman, Karena W., and Farha, Omar K. Sat . "Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal–organic framework". United States. https://doi.org/10.1016/j.poly.2018.05.021. https://www.osti.gov/servlets/purl/1474406.
@article{osti_1474406,
title = {Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal–organic framework},
author = {Rangwani, Sean and Howarth, Ashlee J. and DeStefano, Matthew R. and Malliakas, Christos D. and Platero-Prats, Ana E. and Chapman, Karena W. and Farha, Omar K.},
abstractNote = {Here, the adsorption and removal of Sb(OH)6- from water using the water stable Zr6-based MOF, NU-1000, is explored. The adsorption capacity and uptake time of Sb(OH)6- in NU-1000 is measured at varying concentrations to determine an overall maximum adsorption capacity of 260 mg of Sb(OH)6- per g of MOF, corresponding to 2.5 Sb(OH)6- per node of NU-1000 and exhibiting the highest adsorption capacity of any material reported to date for Sb(V) removal. Differential pair distribution function (dPDF) analysis of total X-ray scattering data reveals that Sb(OH)6- interacts in an η2μ2 fashion with the Zr6-node of NU-1000, and that as the amount of Sb(OH)6- adsorbed increases, the interaction between the analyte and the node becomes stronger. Post-adsorption characterization shows that NU-1000 remains stable throughout the adsorption process.},
doi = {10.1016/j.poly.2018.05.021},
journal = {Polyhedron},
number = C,
volume = 151,
place = {United States},
year = {Sat May 26 00:00:00 EDT 2018},
month = {Sat May 26 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Structure of (a) NU-1000; (b) the eight-connected Zr6 metal node of NU-1000; and (c) the tetratopic pyrene-based linker, 1,3,6,8-tetrakis(p-benzoate)pyrene, of NU-1000.

Save / Share:

Works referenced in this record:

Cobalt and antimony: genotoxicity and carcinogenicity
journal, December 2003


Antimony in the environment: a review focused on natural waters
journal, January 2002


Removal of antimony(V) and antimony(III) from drinking water by coagulation–flocculation–sedimentation (CFS)
journal, September 2009


Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis
journal, December 2010


Removal of antimony (Sb(V)) from Sb mine drainage: Biological sulfate reduction and sulfide oxidation–precipitation
journal, October 2013


Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes
journal, December 2000


Mercury and antimony in wastewater: fate and treatment
journal, February 2016

  • Hargreaves, Andrew J.; Vale, Peter; Whelan, Jonathan
  • Water, Air, & Soil Pollution, Vol. 227, Issue 3
  • DOI: 10.1007/s11270-016-2756-8

Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption
journal, March 2015


Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO 2 )
journal, July 2015

  • Luo, Jinming; Luo, Xubiao; Crittenden, John
  • Environmental Science & Technology, Vol. 49, Issue 18
  • DOI: 10.1021/acs.est.5b02903

Removal of antimony(III) from aqueous solution by graphene as an adsorbent
journal, November 2012


Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure
journal, July 2014


The mechanism of antimony(III) removal and its reactions on the surfaces of Fe–Mn Binary Oxide
journal, November 2011

  • Xu, Wei; Wang, Hongjie; Liu, Ruiping
  • Journal of Colloid and Interface Science, Vol. 363, Issue 1
  • DOI: 10.1016/j.jcis.2011.07.026

The dual capture of As V and As III by UiO-66 and analogues
journal, January 2016

  • Audu, Cornelius O.; Nguyen, Huong Giang T.; Chang, Chih-Yi
  • Chemical Science, Vol. 7, Issue 10
  • DOI: 10.1039/C6SC00490C

High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks
journal, June 2015

  • Howarth, Ashlee J.; Katz, Michael J.; Wang, Timothy C.
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b03904

Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water
journal, January 2015

  • Howarth, Ashlee J.; Liu, Yangyang; Hupp, Joseph T.
  • CrystEngComm, Vol. 17, Issue 38
  • DOI: 10.1039/C5CE01428J

Efficient extraction of sulfate from water using a Zr-metal–organic framework
journal, January 2016

  • Howarth, Ashlee J.; Wang, Timothy C.; Al-Juaid, Salih S.
  • Dalton Transactions, Vol. 45, Issue 1
  • DOI: 10.1039/C5DT04163E

Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review
journal, January 2013


Metal–organic framework technologies for water remediation: towards a sustainable ecosystem
journal, January 2018

  • Mon, Marta; Bruno, Rosaria; Ferrando-Soria, Jesus
  • Journal of Materials Chemistry A, Vol. 6, Issue 12
  • DOI: 10.1039/C8TA00264A

A versatile MOF-based trap for heavy metal ion capture and dispersion
journal, January 2018


Superior removal of arsenic from water with zirconium metal-organic framework UiO-66
journal, November 2015

  • Wang, Chenghong; Liu, Xinlei; Chen, J. Paul
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep16613

Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions
journal, February 2015


Water Purification: Adsorption over Metal-Organic Frameworks
journal, February 2016

  • Li, Siqing; Chen, Yifa; Pei, Xiaokun
  • Chinese Journal of Chemistry, Vol. 34, Issue 2
  • DOI: 10.1002/cjoc.201500761

Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite
journal, March 2018


Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?
journal, August 2012

  • Farha, Omar K.; Eryazici, Ibrahim; Jeong, Nak Cheon
  • Journal of the American Chemical Society, Vol. 134, Issue 36, p. 15016-15021
  • DOI: 10.1021/ja3055639

Water-Stable Zirconium-Based Metal-Organic Framework Material with High-Surface Area and Gas-Storage Capacities
journal, August 2014

  • Gutov, Oleksii V.; Bury, Wojciech; Gomez-Gualdron, Diego A.
  • Chemistry - A European Journal, Vol. 20, Issue 39
  • DOI: 10.1002/chem.201402895

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Hydrogen Storage in Metal-Organic Frameworks: A Review
journal, May 2014


Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs
journal, January 2018


Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000
journal, December 2015

  • Wang, Timothy C.; Vermeulen, Nicolaas A.; Kim, In Soo
  • Nature Protocols, Vol. 11, Issue 1
  • DOI: 10.1038/nprot.2016.001

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


Fityk : a general-purpose peak fitting program
journal, September 2010


Uptake of antimonite and antimonate by arsenic hyperaccumulator Pteris vittata: Effects of chemical analogs and transporter inhibitor
journal, November 2015


Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires
journal, July 2017

  • Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b04997

Stabilizing a Vanadium Oxide Catalyst by Supporting on a Metal-Organic Framework
journal, February 2018

  • Cui, Yuexing; Rimoldi, Martino; Platero-Prats, Ana E.
  • ChemCatChem, Vol. 10, Issue 8
  • DOI: 10.1002/cctc.201701658

Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature
journal, November 2016


Effective removal and recovery of antimony using metal-loaded saponified orange waste
journal, December 2009

  • Biswas, Biplob Kumar; Inoue, Jun-ichi; Kawakita, Hidetaka
  • Journal of Hazardous Materials, Vol. 172, Issue 2-3
  • DOI: 10.1016/j.jhazmat.2009.07.055

Antimonate removal from water using hierarchical macro-/mesoporous amorphous alumina
journal, March 2015


Removal of Antimony (V) from Aqueous Solution by Iron-based Adsorbents
journal, January 2016

  • Li, Yongchao; Zhang, Fei; Hu, Xiaoxian
  • American Chemical Science Journal, Vol. 14, Issue 2
  • DOI: 10.9734/ACSJ/2016/25366

Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron
journal, July 2014


Works referencing / citing this record:

Performance of metal–organic frameworks for the adsorptive removal of potentially toxic elements in a water system: a critical review
journal, January 2019

  • Ramanayaka, Sammani; Vithanage, Meththika; Sarmah, Ajit
  • RSC Advances, Vol. 9, Issue 59
  • DOI: 10.1039/c9ra06879a

Novel Schiff base-functionalized metal–organic framework nanoparticles for dispersive solid phase extraction of copper ions from vegetable and water samples
journal, January 2019

  • Mohammadi Nilash, Mohammadreza; Hashemzadeh, Alireza; Fakhari, Ali Reza
  • Analytical Methods, Vol. 11, Issue 20
  • DOI: 10.1039/c9ay00304e

Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs
journal, January 2018

  • Drout, Riki J.; Howarth, Ashlee J.; Otake, Ken-ichi
  • CrystEngComm, Vol. 20, Issue 40
  • DOI: 10.1039/c8ce00992a

Recent Progress in the Removal of Heavy Metal Ions from Water Using Metal‐Organic Frameworks
journal, January 2020

  • Shayegan, Hossein; Ali, Gomaa A. M.; Safarifard, Vahid
  • ChemistrySelect, Vol. 5, Issue 1
  • DOI: 10.1002/slct.201904107

Green applications of metal–organic frameworks
journal, January 2018

  • Ajoyan, Zvart; Marino, Paola; Howarth, Ashlee J.
  • CrystEngComm, Vol. 20, Issue 39
  • DOI: 10.1039/c8ce01002a

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.