skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strain tuning of excitons in monolayer WSe 2

Abstract

Here, we investigate excitonic absorption and emission in monolayer (1L) WSe 2 under tensile strain. We observe a redshift of 100 meV in the A exciton energy and a decrease of 25 meV in its estimated binding energy under 2.1% strain. Surprisingly, the linewidth of the A exciton decreases by almost a factor of two under strain, from 42 to 24 meV at room temperature. We explain this effect as the result of suppression of phonon-mediated exciton scattering channels. We show that such a suppression results from the relative shift under strain of a secondary valley in the conduction band that is nearly degenerate with the K valley where the A exciton is formed.

Authors:
 [1];  [1];  [1]
  1. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1562880
Alternate Identifier(s):
OSTI ID: 1474105; OSTI ID: 1474195
Grant/Contract Number:  
AC02-76SF00515; DMR-1420634
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 98; Journal Issue: 11; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; excitons; phonons; 2-dimensional systems; transition-metal dichalcogenides; monolayer films; optical absorption and photoluminescence spectroscopy; strain engineering

Citation Formats

Aslan, Ozgur Burak, Deng, Minda, and Heinz, Tony F. Strain tuning of excitons in monolayer WSe2. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.98.115308.
Aslan, Ozgur Burak, Deng, Minda, & Heinz, Tony F. Strain tuning of excitons in monolayer WSe2. United States. doi:10.1103/PhysRevB.98.115308.
Aslan, Ozgur Burak, Deng, Minda, and Heinz, Tony F. Sat . "Strain tuning of excitons in monolayer WSe2". United States. doi:10.1103/PhysRevB.98.115308. https://www.osti.gov/servlets/purl/1562880.
@article{osti_1562880,
title = {Strain tuning of excitons in monolayer WSe2},
author = {Aslan, Ozgur Burak and Deng, Minda and Heinz, Tony F.},
abstractNote = {Here, we investigate excitonic absorption and emission in monolayer (1L) WSe2 under tensile strain. We observe a redshift of 100 meV in the A exciton energy and a decrease of 25 meV in its estimated binding energy under 2.1% strain. Surprisingly, the linewidth of the A exciton decreases by almost a factor of two under strain, from 42 to 24 meV at room temperature. We explain this effect as the result of suppression of phonon-mediated exciton scattering channels. We show that such a suppression results from the relative shift under strain of a secondary valley in the conduction band that is nearly degenerate with the K valley where the A exciton is formed.},
doi = {10.1103/PhysRevB.98.115308},
journal = {Physical Review B},
number = 11,
volume = 98,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Absorption spectra of 2.1% strained and unstrained 1L WSe2. (b) Strain-dependent PL spectra of 1L WSe2 (offset). Strain dependence of the strength of (c) absorption and (d) PL due to the $A$1s exciton; (e) $E$2s−1s , and A exciton binding energy; (f) $E$B−A. Hollow circles are datamore » points and solid lines are corresponding linear fits in (c)–(f).« less

Save / Share:

Works referenced in this record:

Strain engineering of WS 2 , WSe 2 , and WTe 2
journal, January 2014

  • Amin, B.; Kaloni, T. P.; Schwingenschlögl, U.
  • RSC Advances, Vol. 4, Issue 65
  • DOI: 10.1039/C4RA06378C

Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS 2
journal, September 2013


Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study
journal, June 2014

  • Guzman, David M.; Strachan, Alejandro
  • Journal of Applied Physics, Vol. 115, Issue 24
  • DOI: 10.1063/1.4883995

Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe 2
journal, July 2014

  • Desai, Sujay B.; Seol, Gyungseon; Kang, Jeong Seuk
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl501638a

Spin–orbit coupling in the band structure of monolayer WSe 2
journal, April 2015


Controlling the Electronic Structures and Properties of in-Plane Transition-Metal Dichalcogenides Quantum Wells
journal, November 2015

  • Wei, Wei; Dai, Ying; Niu, Chengwang
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17578

Strain Engineering and Raman Spectroscopy of Monolayer Transition Metal Dichalcogenides
journal, July 2018


Excitonic Linewidth Approaching the Homogeneous Limit in MoS 2 -Based van der Waals Heterostructures
journal, May 2017


Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate
journal, August 2013

  • Jiang, Tao; Huang, Rui; Zhu, Yong
  • Advanced Functional Materials, Vol. 24, Issue 3
  • DOI: 10.1002/adfm.201301999

Strain Control of Exciton–Phonon Coupling in Atomically Thin Semiconductors
journal, February 2018


Strain-modulated excitonic gaps in mono- and bi-layer MoSe 2
journal, July 2016


Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles
journal, March 2013


Strain relaxation and exciton localization effects on the Stokes shift in InAsxP1−x/InP multiple quantum wells
journal, March 1998

  • Aı̈t-Ouali, A.; Yip, R. Y. -F.; Brebner, J. L.
  • Journal of Applied Physics, Vol. 83, Issue 6
  • DOI: 10.1063/1.367129

Elucidating the Optical Properties of Novel Heterolayered Materials Based on MoTe 2 –InN for Photovoltaic Applications
journal, May 2015

  • Villegas, Cesar E. P.; Rocha, A. R.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 21
  • DOI: 10.1021/jp5122596

k · p theory for two-dimensional transition metal dichalcogenide semiconductors
journal, April 2015


Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
journal, September 2015

  • Moody, Galan; Kavir Dass, Chandriker; Hao, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9315

Exciton broadening and band renormalization due to Dexter-like intervalley coupling
journal, February 2018


Coulomb engineering of the bandgap and excitons in two-dimensional materials
journal, May 2017

  • Raja, Archana; Chaves, Andrey; Yu, Jaeeun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15251

Bandgap Engineering of Strained Monolayer and Bilayer MoS2
journal, July 2013

  • Conley, Hiram J.; Wang, Bin; Ziegler, Jed I.
  • Nano Letters, Vol. 13, Issue 8, p. 3626-3630
  • DOI: 10.1021/nl4014748

Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
journal, November 2016

  • Selig, Malte; Berghäuser, Gunnar; Raja, Archana
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13279

Magnetooptics of Exciton Rydberg States in a Monolayer Semiconductor
journal, February 2018


Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors
journal, January 1993


Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe 2 : Insight from High Magnetic Fields
journal, October 2016


Precise and reversible band gap tuning in single-layer MoSe 2 by uniaxial strain
journal, January 2016

  • Island, Joshua O.; Kuc, Agnieszka; Diependaal, Erik H.
  • Nanoscale, Vol. 8, Issue 5
  • DOI: 10.1039/C5NR08219F

Stretching and Breaking of Ultrathin MoS 2
journal, November 2011

  • Bertolazzi, Simone; Brivio, Jacopo; Kis, Andras
  • ACS Nano, Vol. 5, Issue 12
  • DOI: 10.1021/nn203879f

Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides
journal, July 2014


Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers
journal, July 2017

  • Ajayi, Obafunso A.; Ardelean, Jenny V.; Shepard, Gabriella D.
  • 2D Materials, Vol. 4, Issue 3
  • DOI: 10.1088/2053-1583/aa6aa1

Tightly Bound Excitons in Monolayer WSe 2
journal, July 2014


Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
journal, April 2013

  • Zeng, Hualing; Liu, Gui-Bin; Dai, Junfeng
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01608

Effect of pressure on the low-temperature exciton absorption in GaAs
journal, May 1990


Origin of Indirect Optical Transitions in Few-Layer MoS 2 , WS 2 , and WSe 2
journal, October 2013

  • Zhao, Weijie; Ribeiro, R. M.; Toh, Minglin
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403270k

Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS 2
journal, August 2016


Very large strain gauges based on single layer MoSe 2 and WSe 2 for sensing applications
journal, December 2015

  • Hosseini, Manouchehr; Elahi, Mohammad; Pourfath, Mahdi
  • Applied Physics Letters, Vol. 107, Issue 25
  • DOI: 10.1063/1.4937438

Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures
journal, February 2017


Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS 2
journal, May 2013

  • He, Keliang; Poole, Charles; Mak, Kin Fai
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl4013166

Impact of strain on the optical fingerprint of monolayer transition-metal dichalcogenides
journal, July 2017


Strain-controlled spin splitting in the conduction band of monolayer WS 2
journal, September 2016


Band structure engineering of monolayer MoS 2 on h-BN: first-principles calculations
journal, January 2014


Direct observation of giant binding energy modulation of exciton complexes in monolayer MoS e 2
journal, August 2017


Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer
journal, February 2016

  • Man, Michael K. L.; Deckoff-Jones, Skylar; Winchester, Andrew
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep20890

Phonon-limited mobility in n -type single-layer MoS 2 from first principles
journal, March 2012

  • Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.
  • Physical Review B, Vol. 85, Issue 11
  • DOI: 10.1103/PhysRevB.85.115317

Electrical Tuning of Exciton Binding Energies in Monolayer WS 2
journal, September 2015


Strain-Induced Modulation of Electron Mobility in Single-Layer Transition Metal Dichalcogenides MX 2 ( $M = {\rm Mo}$ ]]>, W; $X = {\rm S}$ ]]>, Se)
journal, October 2015

  • Hosseini, Manouchehr; Elahi, Mohammad; Pourfath, Mahdi
  • IEEE Transactions on Electron Devices, Vol. 62, Issue 10
  • DOI: 10.1109/TED.2015.2461617

Intervalley scattering potentials of Ge from direct exciton absorption under pressure
journal, March 1994


Stokes shift in quantum wells: Trapping versus thermalization
journal, December 1996


Structural and electronic properties of MoS 2 , WS 2 , and WS 2 /MoS 2 heterostructures encapsulated with hexagonal boron nitride monolayers
journal, August 2017

  • Yelgel, C.; Yelgel, Ö. C.; Gülseren, O.
  • Journal of Applied Physics, Vol. 122, Issue 6
  • DOI: 10.1063/1.4998522

Strain-induced giant second-harmonic generation in monolayered 2H-MoX2 (X = S, Se, Te)
journal, December 2015

  • Rhim, S. H.; Kim, Yong Soo; Freeman, A. J.
  • Applied Physics Letters, Vol. 107, Issue 24
  • DOI: 10.1063/1.4938120

Analysis of the Stokes shift in InAsP/InP and InGaP/InP multiple quantum wells
journal, December 1999

  • Aït-Ouali, A.; Brebner, J. L.; Yip, R. Y. -F.
  • Journal of Applied Physics, Vol. 86, Issue 12
  • DOI: 10.1063/1.371755

Orbital analysis of electronic structure and phonon dispersion in MoS 2 , MoSe 2 , WS 2 , and WSe 2 monolayers under strain
journal, November 2013


Probing the Optical Properties and Strain-Tuning of Ultrathin Mo 1– x W x Te 2
journal, March 2018


Reversible uniaxial strain tuning in atomically thin WSe 2
journal, June 2016


Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2
journal, December 2012

  • Zhao, Weijie; Ghorannevis, Zohreh; Chu, Leiqiang
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305275h

Strain-engineered growth of two-dimensional materials
journal, September 2017


Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS 2
journal, August 2014


Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2
journal, April 2013


Theory of neutral and charged excitons in monolayer transition metal dichalcogenides
journal, July 2013

  • Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichman, David R.
  • Physical Review B, Vol. 88, Issue 4
  • DOI: 10.1103/PhysRevB.88.045318

Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2
journal, September 2015


Evidence of indirect gap in monolayer WSe2
journal, October 2017


Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys
journal, August 1996

  • Fischetti, M. V.; Laux, S. E.
  • Journal of Applied Physics, Vol. 80, Issue 4, p. 2234-2252
  • DOI: 10.1063/1.363052

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.