DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strain tuning of excitons in monolayer WSe 2

Abstract

Here, we investigate excitonic absorption and emission in monolayer (1L) WSe2 under tensile strain. We observe a redshift of 100 meV in the A exciton energy and a decrease of 25 meV in its estimated binding energy under 2.1% strain. Surprisingly, the linewidth of the A exciton decreases by almost a factor of two under strain, from 42 to 24 meV at room temperature. We explain this effect as the result of suppression of phonon-mediated exciton scattering channels. We show that such a suppression results from the relative shift under strain of a secondary valley in the conduction band that is nearly degenerate with the K valley where the A exciton is formed.

Authors:
 [1];  [1];  [1]
  1. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1562880
Alternate Identifier(s):
OSTI ID: 1474105; OSTI ID: 1474195
Grant/Contract Number:  
DMR-1420634; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 98; Journal Issue: 11; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; excitons; phonons; 2-dimensional systems; transition-metal dichalcogenides; monolayer films; optical absorption and photoluminescence spectroscopy; strain engineering

Citation Formats

Aslan, Ozgur Burak, Deng, Minda, and Heinz, Tony F. Strain tuning of excitons in monolayer WSe2. United States: N. p., 2018. Web. doi:10.1103/physrevb.98.115308.
Aslan, Ozgur Burak, Deng, Minda, & Heinz, Tony F. Strain tuning of excitons in monolayer WSe2. United States. https://doi.org/10.1103/physrevb.98.115308
Aslan, Ozgur Burak, Deng, Minda, and Heinz, Tony F. Thu . "Strain tuning of excitons in monolayer WSe2". United States. https://doi.org/10.1103/physrevb.98.115308. https://www.osti.gov/servlets/purl/1562880.
@article{osti_1562880,
title = {Strain tuning of excitons in monolayer WSe2},
author = {Aslan, Ozgur Burak and Deng, Minda and Heinz, Tony F.},
abstractNote = {Here, we investigate excitonic absorption and emission in monolayer (1L) WSe2 under tensile strain. We observe a redshift of 100 meV in the A exciton energy and a decrease of 25 meV in its estimated binding energy under 2.1% strain. Surprisingly, the linewidth of the A exciton decreases by almost a factor of two under strain, from 42 to 24 meV at room temperature. We explain this effect as the result of suppression of phonon-mediated exciton scattering channels. We show that such a suppression results from the relative shift under strain of a secondary valley in the conduction band that is nearly degenerate with the K valley where the A exciton is formed.},
doi = {10.1103/physrevb.98.115308},
journal = {Physical Review B},
number = 11,
volume = 98,
place = {United States},
year = {Thu Sep 27 00:00:00 EDT 2018},
month = {Thu Sep 27 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 84 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Absorption spectra of 2.1% strained and unstrained 1L WSe2. (b) Strain-dependent PL spectra of 1L WSe2 (offset). Strain dependence of the strength of (c) absorption and (d) PL due to the $A$1s exciton; (e) $E$2s−1s , and A exciton binding energy; (f) $E$B−A. Hollow circles are datamore » points and solid lines are corresponding linear fits in (c)–(f).« less

Save / Share:

Works referenced in this record:

Strain engineering of WS 2 , WSe 2 , and WTe 2
journal, January 2014

  • Amin, B.; Kaloni, T. P.; Schwingenschlögl, U.
  • RSC Advances, Vol. 4, Issue 65
  • DOI: 10.1039/C4RA06378C

Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS 2
journal, September 2013


Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study
journal, June 2014

  • Guzman, David M.; Strachan, Alejandro
  • Journal of Applied Physics, Vol. 115, Issue 24
  • DOI: 10.1063/1.4883995

Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe 2
journal, July 2014

  • Desai, Sujay B.; Seol, Gyungseon; Kang, Jeong Seuk
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl501638a

Spin–orbit coupling in the band structure of monolayer WSe 2
journal, April 2015


Controlling the Electronic Structures and Properties of in-Plane Transition-Metal Dichalcogenides Quantum Wells
journal, November 2015

  • Wei, Wei; Dai, Ying; Niu, Chengwang
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17578

Strain Engineering and Raman Spectroscopy of Monolayer Transition Metal Dichalcogenides
journal, July 2018


Excitonic Linewidth Approaching the Homogeneous Limit in MoS 2 -Based van der Waals Heterostructures
journal, May 2017


Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate
journal, August 2013

  • Jiang, Tao; Huang, Rui; Zhu, Yong
  • Advanced Functional Materials, Vol. 24, Issue 3
  • DOI: 10.1002/adfm.201301999

Strain Control of Exciton–Phonon Coupling in Atomically Thin Semiconductors
journal, February 2018


Strain-modulated excitonic gaps in mono- and bi-layer MoSe 2
journal, July 2016


Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles
journal, March 2013


Strain relaxation and exciton localization effects on the Stokes shift in InAsxP1−x/InP multiple quantum wells
journal, March 1998

  • Aı̈t-Ouali, A.; Yip, R. Y. -F.; Brebner, J. L.
  • Journal of Applied Physics, Vol. 83, Issue 6
  • DOI: 10.1063/1.367129

Elucidating the Optical Properties of Novel Heterolayered Materials Based on MoTe 2 –InN for Photovoltaic Applications
journal, May 2015

  • Villegas, Cesar E. P.; Rocha, A. R.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 21
  • DOI: 10.1021/jp5122596

k · p theory for two-dimensional transition metal dichalcogenide semiconductors
journal, April 2015


Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
journal, September 2015

  • Moody, Galan; Kavir Dass, Chandriker; Hao, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9315

Exciton broadening and band renormalization due to Dexter-like intervalley coupling
journal, February 2018


Coulomb engineering of the bandgap and excitons in two-dimensional materials
journal, May 2017

  • Raja, Archana; Chaves, Andrey; Yu, Jaeeun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15251

Bandgap Engineering of Strained Monolayer and Bilayer MoS2
journal, July 2013

  • Conley, Hiram J.; Wang, Bin; Ziegler, Jed I.
  • Nano Letters, Vol. 13, Issue 8, p. 3626-3630
  • DOI: 10.1021/nl4014748

Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
journal, November 2016

  • Selig, Malte; Berghäuser, Gunnar; Raja, Archana
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13279

Magnetooptics of Exciton Rydberg States in a Monolayer Semiconductor
journal, February 2018


Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors
journal, January 1993


Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe 2 : Insight from High Magnetic Fields
journal, October 2016


Precise and reversible band gap tuning in single-layer MoSe 2 by uniaxial strain
journal, January 2016

  • Island, Joshua O.; Kuc, Agnieszka; Diependaal, Erik H.
  • Nanoscale, Vol. 8, Issue 5
  • DOI: 10.1039/C5NR08219F

Stretching and Breaking of Ultrathin MoS 2
journal, November 2011

  • Bertolazzi, Simone; Brivio, Jacopo; Kis, Andras
  • ACS Nano, Vol. 5, Issue 12
  • DOI: 10.1021/nn203879f

Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides
journal, July 2014


Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers
journal, July 2017

  • Ajayi, Obafunso A.; Ardelean, Jenny V.; Shepard, Gabriella D.
  • 2D Materials, Vol. 4, Issue 3
  • DOI: 10.1088/2053-1583/aa6aa1

Tightly Bound Excitons in Monolayer WSe 2
journal, July 2014


Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
journal, April 2013

  • Zeng, Hualing; Liu, Gui-Bin; Dai, Junfeng
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01608

Effect of pressure on the low-temperature exciton absorption in GaAs
journal, May 1990


Origin of Indirect Optical Transitions in Few-Layer MoS 2 , WS 2 , and WSe 2
journal, October 2013

  • Zhao, Weijie; Ribeiro, R. M.; Toh, Minglin
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403270k

Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS 2
journal, August 2016


Very large strain gauges based on single layer MoSe 2 and WSe 2 for sensing applications
journal, December 2015

  • Hosseini, Manouchehr; Elahi, Mohammad; Pourfath, Mahdi
  • Applied Physics Letters, Vol. 107, Issue 25
  • DOI: 10.1063/1.4937438

Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures
journal, February 2017


Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS 2
journal, May 2013

  • He, Keliang; Poole, Charles; Mak, Kin Fai
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl4013166

Impact of strain on the optical fingerprint of monolayer transition-metal dichalcogenides
journal, July 2017


Strain-controlled spin splitting in the conduction band of monolayer WS 2
journal, September 2016


Band structure engineering of monolayer MoS 2 on h-BN: first-principles calculations
journal, January 2014


Direct observation of giant binding energy modulation of exciton complexes in monolayer MoS e 2
journal, August 2017


Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer
journal, February 2016

  • Man, Michael K. L.; Deckoff-Jones, Skylar; Winchester, Andrew
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep20890

Phonon-limited mobility in n -type single-layer MoS 2 from first principles
journal, March 2012

  • Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.
  • Physical Review B, Vol. 85, Issue 11
  • DOI: 10.1103/PhysRevB.85.115317

Electrical Tuning of Exciton Binding Energies in Monolayer WS 2
journal, September 2015


Strain-Induced Modulation of Electron Mobility in Single-Layer Transition Metal Dichalcogenides MX 2 ( $M = {\rm Mo}$ , W; $X = {\rm S}$ , Se)
journal, October 2015

  • Hosseini, Manouchehr; Elahi, Mohammad; Pourfath, Mahdi
  • IEEE Transactions on Electron Devices, Vol. 62, Issue 10
  • DOI: 10.1109/TED.2015.2461617

Intervalley scattering potentials of Ge from direct exciton absorption under pressure
journal, March 1994


Stokes shift in quantum wells: Trapping versus thermalization
journal, December 1996


Structural and electronic properties of MoS 2 , WS 2 , and WS 2 /MoS 2 heterostructures encapsulated with hexagonal boron nitride monolayers
journal, August 2017

  • Yelgel, C.; Yelgel, Ö. C.; Gülseren, O.
  • Journal of Applied Physics, Vol. 122, Issue 6
  • DOI: 10.1063/1.4998522

Strain-induced giant second-harmonic generation in monolayered 2H-MoX2 (X = S, Se, Te)
journal, December 2015

  • Rhim, S. H.; Kim, Yong Soo; Freeman, A. J.
  • Applied Physics Letters, Vol. 107, Issue 24
  • DOI: 10.1063/1.4938120

Analysis of the Stokes shift in InAsP/InP and InGaP/InP multiple quantum wells
journal, December 1999

  • Aït-Ouali, A.; Brebner, J. L.; Yip, R. Y. -F.
  • Journal of Applied Physics, Vol. 86, Issue 12
  • DOI: 10.1063/1.371755

Orbital analysis of electronic structure and phonon dispersion in MoS 2 , MoSe 2 , WS 2 , and WSe 2 monolayers under strain
journal, November 2013


Probing the Optical Properties and Strain-Tuning of Ultrathin Mo 1– x W x Te 2
journal, March 2018


Reversible uniaxial strain tuning in atomically thin WSe 2
journal, June 2016


Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2
journal, December 2012

  • Zhao, Weijie; Ghorannevis, Zohreh; Chu, Leiqiang
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305275h

Strain-engineered growth of two-dimensional materials
journal, September 2017


Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS 2
journal, August 2014


Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2
journal, April 2013


Theory of neutral and charged excitons in monolayer transition metal dichalcogenides
journal, July 2013

  • Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichman, David R.
  • Physical Review B, Vol. 88, Issue 4
  • DOI: 10.1103/PhysRevB.88.045318

Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2
journal, September 2015


Evidence of indirect gap in monolayer WSe2
journal, October 2017


Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys
journal, August 1996

  • Fischetti, M. V.; Laux, S. E.
  • Journal of Applied Physics, Vol. 80, Issue 4, p. 2234-2252
  • DOI: 10.1063/1.363052

Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
conference, February 2017

  • Selig, Malte; Berghäuser, Gunnar; Raja, Archana
  • SPIE OPTO, SPIE Proceedings
  • DOI: 10.1117/12.2252486

Coulomb engineering of the bandgap and excitons in two-dimensional materials
text, January 2017

  • Raja, Archana; Chaves, Andrey; Yu, Jaeeun
  • Universität Regensburg
  • DOI: 10.5283/epub.40514

Twist-tailoring Coulomb correlations in van der Waals homobilayers
text, January 2020

  • Merkl, Philipp; Mooshammer, Fabian; Brem, Samuel
  • Universität Regensburg
  • DOI: 10.5283/epub.43186

Origin of the Stokes Shift: A Geometrical Model of Exciton Spectra in 2D Semiconductors
journal, March 1994


Coulomb engineering of the bandgap and excitons in two-dimensional materials
text, January 2017

  • Chernikov, Alexey; Raja, Archana; Chaves, Andrey
  • Universität Regensburg
  • DOI: 10.5283/epub.35591

Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2
text, January 2012


Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides
text, January 2013


Origin of indirect optical transitions in few-layer MoS2, WS2 and WSe2
text, January 2013


k.p theory for two-dimensional transition metal dichalcogenide semiconductors
text, January 2014


Stokes shift in quantum wells: trapping versus thermalization
text, January 1996


Works referencing / citing this record:

Dielectric disorder in two-dimensional materials
journal, August 2019


Intrinsic lifetime of higher excitonic states in tungsten diselenide monolayers
journal, January 2019

  • Brem, Samuel; Zipfel, Jonas; Selig, Malte
  • Nanoscale, Vol. 11, Issue 25
  • DOI: 10.1039/c9nr04211c

Exciton control in a room temperature bulk semiconductor with coherent strain pulses
journal, November 2019

  • Baldini, Edoardo; Dominguez, Adriel; Palmieri, Tania
  • Science Advances, Vol. 5, Issue 11
  • DOI: 10.1126/sciadv.aax2937

Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides
text, January 2019

  • Zollner, Klaus; Faria Junior, Paulo E.; Fabian, Jaroslav
  • Universität Regensburg
  • DOI: 10.5283/epub.41297

Intrinsic Lifetime of Higher Excitonic States in Tungsten Diselenide Monolayers
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.