DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anisotropic spin-orbit torque generation in epitaxial SrIrO 3 by symmetry design

Abstract

Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3. We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry designmore » approach to engineer spin-orbit effects. In conclusion, we therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.« less

Authors:
 [1];  [1];  [2];  [3];  [4];  [5];  [5];  [6];  [7];  [7];  [2]; ORCiD logo [8];  [8];  [7];  [6];  [4];  [9];  [10]; ORCiD logo [1]
  1. Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53706,
  2. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853,
  3. Department of Physics and Centre for Quantum Materials, University of Toronto, Toronto, ON M5S 1A7, Canada,
  4. Department of Physics, University of Wisconsin–Madison, Madison, WI 53706,
  5. Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439,
  6. Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea,
  7. Department of Physics and Astronomy &, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588,
  8. Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115,
  9. Department of Physics and Centre for Quantum Materials, University of Toronto, Toronto, ON M5S 1A7, Canada,, Canadian Institute for Advanced Research/Quantum Materials Program, Toronto, ON M5G 1Z8, Canada,, School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea,
  10. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853,, Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1562600
Alternate Identifier(s):
OSTI ID: 1574305
Grant/Contract Number:  
FG02-06ER46327; AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 116 Journal Issue: 33; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; SrIrO3; epitaxial thin films; spin-Hall effect; spin-orbit torque

Citation Formats

Nan, T., Anderson, T. J., Gibbons, J., Hwang, K., Campbell, N., Zhou, H., Dong, Y. Q., Kim, G. Y., Shao, D. F., Paudel, T. R., Reynolds, N., Wang, X. J., Sun, N. X., Tsymbal, E. Y., Choi, S. Y., Rzchowski, M. S., Kim, Yong Baek, Ralph, D. C., and Eom, C. B. Anisotropic spin-orbit torque generation in epitaxial SrIrO 3 by symmetry design. United States: N. p., 2019. Web. doi:10.1073/pnas.1812822116.
Nan, T., Anderson, T. J., Gibbons, J., Hwang, K., Campbell, N., Zhou, H., Dong, Y. Q., Kim, G. Y., Shao, D. F., Paudel, T. R., Reynolds, N., Wang, X. J., Sun, N. X., Tsymbal, E. Y., Choi, S. Y., Rzchowski, M. S., Kim, Yong Baek, Ralph, D. C., & Eom, C. B. Anisotropic spin-orbit torque generation in epitaxial SrIrO 3 by symmetry design. United States. https://doi.org/10.1073/pnas.1812822116
Nan, T., Anderson, T. J., Gibbons, J., Hwang, K., Campbell, N., Zhou, H., Dong, Y. Q., Kim, G. Y., Shao, D. F., Paudel, T. R., Reynolds, N., Wang, X. J., Sun, N. X., Tsymbal, E. Y., Choi, S. Y., Rzchowski, M. S., Kim, Yong Baek, Ralph, D. C., and Eom, C. B. Fri . "Anisotropic spin-orbit torque generation in epitaxial SrIrO 3 by symmetry design". United States. https://doi.org/10.1073/pnas.1812822116.
@article{osti_1562600,
title = {Anisotropic spin-orbit torque generation in epitaxial SrIrO 3 by symmetry design},
author = {Nan, T. and Anderson, T. J. and Gibbons, J. and Hwang, K. and Campbell, N. and Zhou, H. and Dong, Y. Q. and Kim, G. Y. and Shao, D. F. and Paudel, T. R. and Reynolds, N. and Wang, X. J. and Sun, N. X. and Tsymbal, E. Y. and Choi, S. Y. and Rzchowski, M. S. and Kim, Yong Baek and Ralph, D. C. and Eom, C. B.},
abstractNote = {Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3. We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. In conclusion, we therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.},
doi = {10.1073/pnas.1812822116},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 33,
volume = 116,
place = {United States},
year = {Fri Jul 26 00:00:00 EDT 2019},
month = {Fri Jul 26 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1812822116

Citation Metrics:
Cited by: 65 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: The mechanism of the spin-Hall effect in SrIrO3. a, Orthorhombic perovskite crystal structure of bulk SrIrO3, where ao, bo, and co correspond to the [100]o, [010]o, and [001]o directions (subscript o for orthorhombic notation), respectively. b, Electron energy band structure of the bulk system on the XURS planemore » of the Brillouin zone and the momentum-resolved SHC Ω(𝑘) in the Brillouin zone at the charge neutrality point. The red arcs at the bottom represent the momentum-resolved SHC, which is the net Berry curvature summed over occupied electron levels below a given Fermi level (green). c, Schematic illustrations of the lattice symmetry of SrIrO3 when grown on cubic non-tilted SrTiO3, where a partial suppression of the IrO6 octahedral tilt exists up to a certain thickness before a tilted octahedral pattern is established in thicker films.« less

Save / Share:

Works referenced in this record:

Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum
journal, May 2012


Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure
journal, April 2014

  • Fan, Yabin; Upadhyaya, Pramey; Kou, Xufeng
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat3973

Observation of the nonlocal spin-orbital effective field
journal, April 2013

  • Fan, Xin; Wu, Jun; Chen, Yunpeng
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2709

Misfit strain accommodation in epitaxial A B O 3 perovskites: Lattice rotations and lattice modulations
journal, February 2011


Correlated Quantum Phenomena in the Strong Spin-Orbit Regime
journal, March 2014


Mott physics and band topology in materials with strong spin–orbit interaction
journal, March 2010

  • Pesin, Dmytro; Balents, Leon
  • Nature Physics, Vol. 6, Issue 5
  • DOI: 10.1038/nphys1606

Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures
journal, May 2010

  • Brüne, C.; Roth, A.; Novik, E. G.
  • Nature Physics, Vol. 6, Issue 6
  • DOI: 10.1038/nphys1655

Current-induced spin–orbit torques
journal, August 2011

  • Gambardella, Pietro; Miron, Ioan Mihai
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 369, Issue 1948
  • DOI: 10.1098/rsta.2010.0336

Topological crystalline metal in orthorhombic perovskite iridates
journal, March 2015

  • Chen, Yige; Lu, Yuan-Ming; Kee, Hae-Young
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7593

Spin conversion on the nanoscale
journal, July 2017

  • Otani, YoshiChika; Shiraishi, Masashi; Oiwa, Akira
  • Nature Physics, Vol. 13, Issue 9
  • DOI: 10.1038/nphys4192

Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect
journal, January 2011


Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO
journal, December 2012

  • Kim, Junyeon; Sinha, Jaivardhan; Hayashi, Masamitsu
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3522

Quadratic Fermi node in a 3D strongly correlated semimetal
journal, December 2015

  • Kondo, Takeshi; Nakayama, M.; Chen, R.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10042

Spin-transfer torque generated by a topological insulator
journal, July 2014

  • Mellnik, A. R.; Lee, J. S.; Richardella, A.
  • Nature, Vol. 511, Issue 7510
  • DOI: 10.1038/nature13534

Enhanced spin–orbit torques by oxygen incorporation in tungsten films
journal, February 2016

  • Demasius, Kai-Uwe; Phung, Timothy; Zhang, Weifeng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10644

Nonlocal magnetization dynamics in ferromagnetic heterostructures
journal, December 2005

  • Tserkovnyak, Yaroslav; Brataas, Arne; Bauer, Gerrit E. W.
  • Reviews of Modern Physics, Vol. 77, Issue 4
  • DOI: 10.1103/RevModPhys.77.1375

Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3
journal, February 2014

  • Li, C. H.; van ‘t Erve, O. M. J.; Robinson, J. T.
  • Nature Nanotechnology, Vol. 9, Issue 3
  • DOI: 10.1038/nnano.2014.16

Semimetal and Topological Insulator in Perovskite Iridates
journal, March 2012


Observation of the Spin Hall Effect in Semiconductors
journal, December 2004


Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect
journal, April 2015

  • Zhang, Weifeng; Han, Wei; Jiang, Xin
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3304

Topological semimetals with helicoid surface states
journal, June 2016

  • Fang, Chen; Lu, Ling; Liu, Junwei
  • Nature Physics, Vol. 12, Issue 10
  • DOI: 10.1038/nphys3782

Spin Hall Effect
journal, August 1999


Interplay of Spin-Orbit Interactions, Dimensionality, and Octahedral Rotations in Semimetallic SrIrO 3
journal, January 2015


Current-induced torques in magnetic materials
journal, April 2012

  • Brataas, Arne; Kent, Andrew D.; Ohno, Hideo
  • Nature Materials, Vol. 11, Issue 5
  • DOI: 10.1038/nmat3311

Current-driven dynamics of chiral ferromagnetic domain walls
journal, June 2013

  • Emori, Satoru; Bauer, Uwe; Ahn, Sung-Min
  • Nature Materials, Vol. 12, Issue 7
  • DOI: 10.1038/nmat3675

Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling
journal, May 2013


Spin Hall Effects in Metallic Antiferromagnets
journal, November 2014


Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin-pumping
journal, April 2013

  • Boone, C. T.; Nembach, Hans T.; Shaw, Justin M.
  • Journal of Applied Physics, Vol. 113, Issue 15
  • DOI: 10.1063/1.4801799

Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces
journal, August 2016

  • Lesne, E.; Fu, Yu; Oyarzun, S.
  • Nature Materials, Vol. 15, Issue 12
  • DOI: 10.1038/nmat4726

Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α -Sn Films
journal, March 2016


Engineering a Spin-Orbital Magnetic Insulator by Tailoring Superlattices
journal, June 2015


5d iridium oxide as a material for spin-current detection
journal, December 2013

  • Fujiwara, Kohei; Fukuma, Yasuhiro; Matsuno, Jobu
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3893

Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces
journal, August 2015


Spin Hall effects
journal, October 2015

  • Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.
  • Reviews of Modern Physics, Vol. 87, Issue 4
  • DOI: 10.1103/RevModPhys.87.1213

Current-induced spin orientation of electrons in semiconductors
journal, July 1971


Theory of Large Intrinsic Spin Hall Effect in Iridate Semimetals
journal, May 2018


Emergent phenomena at oxide interfaces
journal, January 2012

  • Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3223

Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures
journal, July 2013

  • Garello, Kevin; Miron, Ioan Mihai; Avci, Can Onur
  • Nature Nanotechnology, Vol. 8, Issue 8
  • DOI: 10.1038/nnano.2013.145

Intrinsic Spin Hall Effect in Platinum: First-Principles Calculations
journal, March 2008


Antiferromagnetic spintronics
journal, March 2016

  • Jungwirth, T.; Marti, X.; Wadley, P.
  • Nature Nanotechnology, Vol. 11, Issue 3
  • DOI: 10.1038/nnano.2016.18

Electric Manipulation of Spin Relaxation Using the Spin Hall Effect
journal, July 2008


Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO 3
journal, December 2017


Quantum Spin Hall Effect in a Transition Metal Oxide Na 2 IrO 3
journal, June 2009


Spin-Orbit Semimetal SrIrO 3 in the Two-Dimensional Limit
journal, December 2017


Berry phase effects on electronic properties
journal, July 2010


Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


All-optical vector measurement of spin-orbit-induced torques using both polar and quadratic magneto-optic Kerr effects
journal, September 2016

  • Fan, Xin; Mellnik, Alex R.; Wang, Wenrui
  • Applied Physics Letters, Vol. 109, Issue 12
  • DOI: 10.1063/1.4962402

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.