DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface Engineering of 3D Gas Diffusion Electrodes for High‐Performance H 2 Production with Nonprecious Metal Catalysts

Abstract

Abstract In this work, a methodology is demonstrated to engineer gas diffusion electrodes for nonprecious metal catalysts. Highly active transition metal phosphides are prepared on carbon‐based gas diffusion electrodes with low catalyst loadings by modifying the O/C ratio at the surface of the electrode. These nonprecious metal catalysts yield extraordinary performance as measured by low overpotentials (51 mV at −10 mA cm −2 ), unprecedented mass activities (>800 A g −1 at 100 mV overpotential), high turnover frequencies (6.96 H 2 s −1 at 100 mV overpotential), and high durability for a precious metal‐free catalyst in acidic media. It is found that a high O/C ratio induces a more hydrophilic surface directly impacting the morphology of the CoP catalyst. The improved hydrophilicity, stemming from introduced oxyl groups on the carbon electrode, creates an electrode surface that yields a well‐distributed growth of cobalt electrodeposits and thus a well‐dispersed catalyst layer with high surface area upon phosphidation. This report demonstrates the high‐performance achievable by CoP at low loadings which facilitates further cost reduction, an important part of enabling the large‐scale commercialization of non‐platinum group metal catalysts. The fabrication strategies described herein offer a pathway to lower catalyst loading while achieving high efficiencymore » and promising stability on a 3D electrode.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [3]
  1. Department of Chemical Engineering Stanford CA 94035 USA, SUNCAT Center for Interface Science and Catalysis Stanford University Stanford CA 94035 USA
  2. Department of Chemical Engineering Stanford CA 94035 USA
  3. Department of Chemical Engineering Stanford CA 94035 USA, SUNCAT Center for Interface Science and Catalysis Stanford University Stanford CA 94035 USA, SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1562331
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 9 Journal Issue: 40; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Sanchez, Joel, Hellstern, Thomas R., King, Laurie A., and Jaramillo, Thomas F. Surface Engineering of 3D Gas Diffusion Electrodes for High‐Performance H 2 Production with Nonprecious Metal Catalysts. Germany: N. p., 2019. Web. doi:10.1002/aenm.201901824.
Sanchez, Joel, Hellstern, Thomas R., King, Laurie A., & Jaramillo, Thomas F. Surface Engineering of 3D Gas Diffusion Electrodes for High‐Performance H 2 Production with Nonprecious Metal Catalysts. Germany. https://doi.org/10.1002/aenm.201901824
Sanchez, Joel, Hellstern, Thomas R., King, Laurie A., and Jaramillo, Thomas F. Tue . "Surface Engineering of 3D Gas Diffusion Electrodes for High‐Performance H 2 Production with Nonprecious Metal Catalysts". Germany. https://doi.org/10.1002/aenm.201901824.
@article{osti_1562331,
title = {Surface Engineering of 3D Gas Diffusion Electrodes for High‐Performance H 2 Production with Nonprecious Metal Catalysts},
author = {Sanchez, Joel and Hellstern, Thomas R. and King, Laurie A. and Jaramillo, Thomas F.},
abstractNote = {Abstract In this work, a methodology is demonstrated to engineer gas diffusion electrodes for nonprecious metal catalysts. Highly active transition metal phosphides are prepared on carbon‐based gas diffusion electrodes with low catalyst loadings by modifying the O/C ratio at the surface of the electrode. These nonprecious metal catalysts yield extraordinary performance as measured by low overpotentials (51 mV at −10 mA cm −2 ), unprecedented mass activities (>800 A g −1 at 100 mV overpotential), high turnover frequencies (6.96 H 2 s −1 at 100 mV overpotential), and high durability for a precious metal‐free catalyst in acidic media. It is found that a high O/C ratio induces a more hydrophilic surface directly impacting the morphology of the CoP catalyst. The improved hydrophilicity, stemming from introduced oxyl groups on the carbon electrode, creates an electrode surface that yields a well‐distributed growth of cobalt electrodeposits and thus a well‐dispersed catalyst layer with high surface area upon phosphidation. This report demonstrates the high‐performance achievable by CoP at low loadings which facilitates further cost reduction, an important part of enabling the large‐scale commercialization of non‐platinum group metal catalysts. The fabrication strategies described herein offer a pathway to lower catalyst loading while achieving high efficiency and promising stability on a 3D electrode.},
doi = {10.1002/aenm.201901824},
journal = {Advanced Energy Materials},
number = 40,
volume = 9,
place = {Germany},
year = {Tue Sep 17 00:00:00 EDT 2019},
month = {Tue Sep 17 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201901824

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
journal, January 2012

  • Vesborg, Peter C. K.; Jaramillo, Thomas F.
  • RSC Advances, Vol. 2, Issue 21
  • DOI: 10.1039/c2ra20839c

Mass Transport to Nanoelectrode Arrays and Limitations of the Diffusion Domain Approach: Theory and Experiment
journal, June 2009

  • Godino, Neus; Borrisé, Xavier; Muñoz, Francesc Xavier
  • The Journal of Physical Chemistry C, Vol. 113, Issue 25
  • DOI: 10.1021/jp9031354

Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles
journal, April 2014

  • Popczun, Eric J.; Read, Carlos G.; Roske, Christopher W.
  • Angewandte Chemie International Edition, Vol. 53, Issue 21
  • DOI: 10.1002/anie.201402646

Facile preparation of NH 2 -functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction
journal, January 2018

  • Shao, Lianyi; Sun, Hongming; Miao, Licheng
  • Journal of Materials Chemistry A, Vol. 6, Issue 6
  • DOI: 10.1039/C7TA10884B

An overview of industrial uses of hydrogen
journal, July 1998


Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting
journal, November 2016


A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide
journal, February 2016

  • Liu, Wen; Hu, Enyuan; Jiang, Hong
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10771

Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts
journal, July 2016

  • Morales-Guio, Carlos G.; Liardet, Laurent; Hu, Xile
  • Journal of the American Chemical Society, Vol. 138, Issue 28
  • DOI: 10.1021/jacs.6b05196

Do the Evaluation Parameters Reflect Intrinsic Activity of Electrocatalysts in Electrochemical Water Splitting?
journal, May 2019


Supramolecular-Templated Thick Mesoporous Titania Films for Dye-Sensitized Solar Cells: Effect of Morphology on Performance
journal, November 2009

  • Zhang, Yu; Xie, Zhibin; Wang, John
  • ACS Applied Materials & Interfaces, Vol. 1, Issue 12
  • DOI: 10.1021/am900529e

Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity, Substrate, and Dissolution
journal, November 2015


Best Practices for Reporting Electrocatalytic Performance of Nanomaterials
journal, September 2018


Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
journal, January 2016

  • Shi, Yanmei; Zhang, Bin
  • Chemical Society Reviews, Vol. 45, Issue 6, p. 1529-1541
  • DOI: 10.1039/C5CS00434A

Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Noble metal-free hydrogen evolution catalysts for water splitting
journal, January 2015

  • Zou, Xiaoxin; Zhang, Yu
  • Chemical Society Reviews, Vol. 44, Issue 15
  • DOI: 10.1039/C4CS00448E

Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
journal, November 2016

  • Cheng, Niancai; Stambula, Samantha; Wang, Da
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13638

Considerations for the scaling-up of water splitting catalysts
journal, May 2019


Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles
journal, October 2014

  • Callejas, Juan F.; McEnaney, Joshua M.; Read, Carlos G.
  • ACS Nano, Vol. 8, Issue 11, p. 11101-11107
  • DOI: 10.1021/nn5048553

Low Overpotential Water Splitting Using Cobalt–Cobalt Phosphide Nanoparticles Supported on Nickel Foam
journal, November 2016


Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction
journal, August 2016


Engineering Cobalt Phosphide (CoP) Thin Film Catalysts for Enhanced Hydrogen Evolution Activity on Silicon Photocathodes
journal, December 2015

  • Hellstern, Thomas R.; Benck, Jesse D.; Kibsgaard, Jakob
  • Advanced Energy Materials, Vol. 6, Issue 4
  • DOI: 10.1002/aenm.201501758

An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction
journal, February 2017

  • Mahmood, Javeed; Li, Feng; Jung, Sun-Min
  • Nature Nanotechnology, Vol. 12, Issue 5
  • DOI: 10.1038/nnano.2016.304

Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide
journal, January 2018

  • Xu, Junyuan; Liu, Tianfu; Li, Junjie
  • Energy & Environmental Science, Vol. 11, Issue 7
  • DOI: 10.1039/C7EE03603E

Toward High-Performance and Low-Cost Hydrogen Evolution Reaction Electrocatalysts: Nanostructuring Cobalt Phosphide (CoP) Particles on Carbon Fiber Paper
journal, March 2018

  • Yu, Shu Hearn; Chua, Daniel H. C.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 17
  • DOI: 10.1021/acsami.8b02755

Ultralow charge-transfer resistance with ultralow Pt loading for hydrogen evolution and oxidation using Ru@Pt core-shell nanocatalysts
journal, July 2015

  • Wang, Jia X.; Zhang, Yu; Capuano, Christopher B.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12220

Fabrication and Magnetic Properties of Arrays of Metallic Nanowires
journal, September 1993


Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction
journal, January 2012

  • Hsu, Irene J.; Kimmel, Yannick C.; Jiang, Xiaoqiang
  • Chem. Commun., Vol. 48, Issue 7
  • DOI: 10.1039/C1CC15812K

Electronic perturbations
journal, July 2012


RuP 2 -Based Catalysts with Platinum-like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values
journal, August 2017

  • Pu, Zonghua; Amiinu, Ibrahim Saana; Kou, Zongkui
  • Angewandte Chemie International Edition, Vol. 56, Issue 38
  • DOI: 10.1002/anie.201704911

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters
journal, January 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming
  • Nature Chemistry, Vol. 6, Issue 3
  • DOI: 10.1038/nchem.1853

Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution
journal, May 2018


Bifunctional Nickel Phosphide Nanocatalysts Supported on Carbon Fiber Paper for Highly Efficient and Stable Overall Water Splitting
journal, April 2016

  • Wang, Xiaoguang; Li, Wei; Xiong, Dehua
  • Advanced Functional Materials, Vol. 26, Issue 23
  • DOI: 10.1002/adfm.201505509

Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14
journal, May 2014

  • Tian, Jingqi; Liu, Qian; Asiri, Abdullah M.
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja503372r

Nanocrystalline Ni 5 P 4 : a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media
journal, January 2015

  • Laursen, A. B.; Patraju, K. R.; Whitaker, M. J.
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE02940B

Dibenzothiophene hydrodesulfurization over cobalt phosphide catalysts prepared through a new synthetic approach: Effect of the support
journal, October 2009

  • Cecilia, J. A.; Infantes-Molina, A.; Rodríguez-Castellón, E.
  • Applied Catalysis B: Environmental, Vol. 92, Issue 1-2
  • DOI: 10.1016/j.apcatb.2009.07.017

The Effects of Catalyst Layer Deposition Methodology on Electrode Performance
journal, February 2013

  • Jhong, Huei-Ru “Molly”; Brushett, Fikile R.; Kenis, Paul J. A.
  • Advanced Energy Materials, Vol. 3, Issue 5
  • DOI: 10.1002/aenm.201200759

Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction
journal, October 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.
  • Angewandte Chemie International Edition, Vol. 53, Issue 52
  • DOI: 10.1002/anie.201408222

Pt–C Interfaces Based on Electronegativity-Functionalized Hollow Carbon Spheres for Highly Efficient Hydrogen Evolution
journal, December 2018

  • Shang, Xiao; Liu, Zi-Zhang; Lu, Shan-Shan
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 50
  • DOI: 10.1021/acsami.8b10845

Cobalt phosphide nanoparticles film growth on carbon cloth: A high-performance cathode for electrochemical hydrogen evolution
journal, October 2014


Hydrogen Production From Water Electrolysis: Current Status and Future Trends
journal, February 2012


Transforming Nickel Hydroxide into 3D Prussian Blue Analogue Array to Obtain Ni 2 P/Fe 2 P for Efficient Hydrogen Evolution Reaction
journal, May 2018

  • Ge, Yuancai; Dong, Pei; Craig, Steven R.
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800484

Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation
journal, March 2015

  • Vesborg, Peter C. K.; Seger, Brian; Chorkendorff, Ib
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 6
  • DOI: 10.1021/acs.jpclett.5b00306

Use of Platinum as the Counter Electrode to Study the Activity of Nonprecious Metal Catalysts for the Hydrogen Evolution Reaction
journal, April 2017


Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Importance of Hydrophilic Pretreatment in the Hydrothermal Growth of Amorphous Molybdenum Sulfide for Hydrogen Evolution Catalysis
journal, April 2015


Atmospheric Air Plasma Treated SnS Films: An Efficient Electrocatalyst for HER
journal, October 2018

  • Huang, Po-Chia; Brahma, Sanjaya; Liu, Po-Yen
  • Catalysts, Vol. 8, Issue 10
  • DOI: 10.3390/catal8100462

Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction
journal, June 2013

  • Popczun, Eric J.; McKone, James R.; Read, Carlos G.
  • Journal of the American Chemical Society, Vol. 135, Issue 25
  • DOI: 10.1021/ja403440e