skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crossover from positive to negative optical torque in mesoscale optical matter

Abstract

The photons in circularly polarized light can transfer their quantized spin angular momentum to micro- and nanostructures via absorption and scattering. This normally exerts positive torque on the objects wher the sign (i.e., handedness or angular direction) follows that of the spin angular momentum. Here we show that the sign of the optical torque can be negative in mesoscopic optical matter arrays of metal nanoparticles (NPs) assembled in circularly polarized optical traps. Crossover from positive to negative optical torque, which occurs for arrays with different number, separation and configuration of the constituent particles, is shown to result from many-body interactions as clarified by electrodynamics simulations. Our results establish that both positive and negative optical torque can be readily realized and controlled in optical matter arrays. This property and reconfigurability of the arrays makes possible programmable materials for optomechanical, microrheological and biological applications.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [5];  [4]; ORCiD logo [1]
  1. Clarkson Univ., Potsdam, NY (United States). Dept. of Chemical and Biomolecular Engineering
  2. The Univ. of Chicago, Chicago, IL (United States). James Franck Inst.; The Univ. of Chicago, Chicago, IL (United States). Dept. of Physics
  3. The Univ. of Chicago, Chicago, IL (United States). James Franck Inst.
  4. The Univ. of Chicago, Chicago, IL (United States). James Franck Inst.; The Univ. of Chicago, Chicago, IL (United States). Dept. of Chemistry
  5. Argonne National Lab. (ANL), Argonne, IL, (United States). Center for Nanoscale Materials
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); W.M. Keck Foundation; U.S. Department of Defense (DOD) - Vannevar Bush Faculty Fellowship; National Science Foundation (NSF)
OSTI Identifier:
1562273
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Han, Fei, Parker, John A., Yifat, Yuval, Peterson, Curtis, Gray, Stephen K., Scherer, Norbert F., and Yan, Zijie. Crossover from positive to negative optical torque in mesoscale optical matter. United States: N. p., 2018. Web. doi:10.1038/s41467-018-07376-7.
Han, Fei, Parker, John A., Yifat, Yuval, Peterson, Curtis, Gray, Stephen K., Scherer, Norbert F., & Yan, Zijie. Crossover from positive to negative optical torque in mesoscale optical matter. United States. doi:10.1038/s41467-018-07376-7.
Han, Fei, Parker, John A., Yifat, Yuval, Peterson, Curtis, Gray, Stephen K., Scherer, Norbert F., and Yan, Zijie. Tue . "Crossover from positive to negative optical torque in mesoscale optical matter". United States. doi:10.1038/s41467-018-07376-7. https://www.osti.gov/servlets/purl/1562273.
@article{osti_1562273,
title = {Crossover from positive to negative optical torque in mesoscale optical matter},
author = {Han, Fei and Parker, John A. and Yifat, Yuval and Peterson, Curtis and Gray, Stephen K. and Scherer, Norbert F. and Yan, Zijie},
abstractNote = {The photons in circularly polarized light can transfer their quantized spin angular momentum to micro- and nanostructures via absorption and scattering. This normally exerts positive torque on the objects wher the sign (i.e., handedness or angular direction) follows that of the spin angular momentum. Here we show that the sign of the optical torque can be negative in mesoscopic optical matter arrays of metal nanoparticles (NPs) assembled in circularly polarized optical traps. Crossover from positive to negative optical torque, which occurs for arrays with different number, separation and configuration of the constituent particles, is shown to result from many-body interactions as clarified by electrodynamics simulations. Our results establish that both positive and negative optical torque can be readily realized and controlled in optical matter arrays. This property and reconfigurability of the arrays makes possible programmable materials for optomechanical, microrheological and biological applications.},
doi = {10.1038/s41467-018-07376-7},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Light-driven self-organization of silver NPs into mesoscale optical matter arrays. a Schematic of rotation of an optical matter array in a liquid sample cell illuminated by a circularly polarized laser beam. Blue arrow represents the rotation direction of the electric vector of light, and green arrow indicates themore » rotation direction of an array formed by optical binding of ten NPs. The NPs are experimentally observed from the point of view of the incident light source, where the electric vector rotates counterclockwise in the imaging plane. We use the convention that this is termed left-handed circularly polarized (LHCP). b Dark-field optical images of representative optical matter arrays consisting of 2–13 150 nm diameter silver NPs. The scale bar is 1 µm« less

Save / Share:

Works referenced in this record:

Colloquium : Gripped by light: Optical binding
journal, June 2010


Optical Torque Wrench: Angular Trapping, Rotation, and Torque Detection of Quartz Microparticles
journal, May 2004


Negative Nonconservative Forces: Optical “Tractor Beams” for Arbitrary Objects
journal, November 2011


TrackMate: An open and extensible platform for single-particle tracking
journal, February 2017


Acceleration and Trapping of Particles by Radiation Pressure
journal, January 1970


Linear momentum increase and negative optical forces at dielectric interface
journal, August 2013

  • Kajorndejnukul, Veerachart; Ding, Weiqiang; Sukhov, Sergey
  • Nature Photonics, Vol. 7, Issue 10
  • DOI: 10.1038/nphoton.2013.192

Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques
journal, July 2018


Conservative and Nonconservative Torques in Optical Binding
journal, October 2009


Ultrafast Spinning of Gold Nanoparticles in Water Using Circularly Polarized Light
journal, June 2013

  • Lehmuskero, Anni; Ogier, Robin; Gschneidtner, Tina
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl4010817

Plasmon nano-optical tweezers
journal, May 2011

  • Juan, Mathieu L.; Righini, Maurizio; Quidant, Romain
  • Nature Photonics, Vol. 5, Issue 6
  • DOI: 10.1038/nphoton.2011.56

Optical Microrheology Using Rotating Laser-Trapped Particles
journal, May 2004


Ultrastrong Optical Binding of Metallic Nanoparticles
journal, October 2012

  • Demergis, Vassili; Florin, Ernst-Ludwig
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl303035p

Self-Organization of Metal Nanoparticles in Light: Electrodynamics–Molecular Dynamics Simulations and Optical Binding Experiments
journal, January 2018


Optical Matter: Crystallization and Binding in Intense Optical Fields
journal, August 1990


Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field
journal, January 2006

  • Grzegorczyk, Tomasz M.; Kemp, Brandon A.; Kong, Jin Au
  • Journal of the Optical Society of America A, Vol. 23, Issue 9
  • DOI: 10.1364/JOSAA.23.002324

Photonic clusters formed by dielectric microspheres: Numerical simulations
journal, August 2005


Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes
journal, June 2004

  • Zou, Shengli; Janel, Nicolas; Schatz, George C.
  • The Journal of Chemical Physics, Vol. 120, Issue 23
  • DOI: 10.1063/1.1760740

Surface-plasmon-enhanced transmission through hole arrays in Cr films
journal, January 1999

  • Thio, Tineke; Ghaemi, H. F.; Lezec, H. J.
  • Journal of the Optical Society of America B, Vol. 16, Issue 10
  • DOI: 10.1364/JOSAB.16.001743

A long-range polarization-controlled optical tractor beam
journal, October 2014

  • Shvedov, Vladlen; Davoyan, Arthur R.; Hnatovsky, Cyril
  • Nature Photonics, Vol. 8, Issue 11
  • DOI: 10.1038/nphoton.2014.242

Rotation and Negative Torque in Electrodynamically Bound Nanoparticle Dimers
journal, October 2017


Optical alignment and spinning of laser-trapped microscopic particles
journal, July 1998

  • Friese, M. E. J.; Nieminen, T. A.; Heckenberg, N. R.
  • Nature, Vol. 394, Issue 6691
  • DOI: 10.1038/28566

Plasmonic surface lattice resonances on arrays of different lattice symmetry
journal, August 2014


Left-handed optical radiation torque
journal, July 2014


Light-driven nanoscale plasmonic motors
journal, July 2010

  • Liu, Ming; Zentgraf, Thomas; Liu, Yongmin
  • Nature Nanotechnology, Vol. 5, Issue 8
  • DOI: 10.1038/nnano.2010.128

Electromagnetic scattering by an aggregate of spheres
journal, January 1995


Alignment, Rotation, and Spinning of Single Plasmonic Nanoparticles and Nanowires Using Polarization Dependent Optical Forces
journal, January 2010

  • Tong, Lianming; Miljković, Vladimir D.; Käll, Mikael
  • Nano Letters, Vol. 10, Issue 1
  • DOI: 10.1021/nl9034434

Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’
journal, January 2013


An electrodynamics-Langevin dynamics (ED-LD) approach to simulate metal nanoparticle interactions and motion
journal, January 2015


Electrodynamic mechanism and array stability in optical binding
journal, February 2008

  • Romero, Luciana C. Dávila; Rodríguez, Justo; Andrews, David L.
  • Optics Communications, Vol. 281, Issue 4
  • DOI: 10.1016/j.optcom.2007.10.026

Fabrication of a Material Assembly of Silver Nanoparticles Using the Phase Gradients of Optical Tweezers
journal, April 2015


Future lab-on-a-chip technologies for interrogating individual molecules
journal, July 2006


Enhancement of the ‘tractor-beam’ pulling force on an optically bound structure
journal, November 2017

  • Damková, Jana; Chvátal, Lukáš; Ježek, Jan
  • Light: Science & Applications, Vol. 7, Issue 1
  • DOI: 10.1038/lsa.2017.135

Optical trapping of spheroidal particles in Gaussian beams
journal, January 2007

  • Simpson, Stephen H.; Hanna, Simon
  • Journal of the Optical Society of America A, Vol. 24, Issue 2
  • DOI: 10.1364/JOSAA.24.000430

Optical Torques on Upconverting Particles for Intracellular Microrheometry
journal, November 2016


Optical pulling force
journal, July 2011


Guiding Spatial Arrangements of Silver Nanoparticles by Optical Binding Interactions in Shaped Light Fields
journal, January 2013

  • Yan, Zijie; Shah, Raman A.; Chado, Garrett
  • ACS Nano, Vol. 7, Issue 2
  • DOI: 10.1021/nn3059407

Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters
journal, May 2014

  • Yan, Zijie; Gray, Stephen K.; Scherer, Norbert F.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4751

Negative Optical Torque
journal, September 2014

  • Chen, Jun; Ng, Jack; Ding, Kun
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06386

    Works referencing / citing this record:

    Light‐Driven Self‐Healing of Nanoparticle‐Based Metamolecules
    journal, March 2019


    Light‐Driven Self‐Healing of Nanoparticle‐Based Metamolecules
    journal, April 2019


    Azimuthal Imaginary Poynting Momentum Density
    journal, December 2019


    Optical pulling at macroscopic distances
    journal, March 2019


    Perspective on light-induced transport of particles: from optical forces to phoretic motion
    journal, January 2019

    • Zemánek, Pavel; Volpe, Giorgio; Jonáš, Alexandr
    • Advances in Optics and Photonics, Vol. 11, Issue 3
    • DOI: 10.1364/aop.11.000577

    Negative optical torque on a microsphere in optical tweezers
    journal, January 2019


    Optical binding of nanoparticles
    journal, November 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.