skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 30, 2020

Title: Skyrmions and spirals in MnSi under hydrostatic pressure

Abstract

The archetype cubic chiral magnet MnSi is home to some of the most fascinating states in condensed matter, such as skyrmions and a non-Fermi-liquid behavior in conjunction with a topological Hall effect under hydrostatic pressure. Using small angle neutron scattering, we study the evolution of the helimagnetic, conical, and skyrmionic correlations with increasing hydrostatic pressure. We show that the helical propagation vector smoothly reorients from < 111 > to < 100 > at intermediate pressures. At higher pressures, above the critical pressure, the long-range helimagnetic order disappears at zero magnetic field. Nevertheless, skyrmion lattices and conical spirals form under magnetic fields, in a part of the phase diagram where a topological Hall effect and a non-Fermi-liquid behavior have been reported. These unexpected results shed light on the puzzling behavior of MnSi at high pressures and the mechanisms that destabilize the helimagnetic long-range order at the critical pressure.

Authors:
ORCiD logo [1];  [2];  [3];  [3];  [4];  [4];  [5];  [5];  [6];  [1]
  1. Delft Univ. of Technology, Delft (The Netherlands)
  2. Russian Academy of Sciences, Moscow (Russia); Russian Academy of Sciences, Troitsk (Russia); National Univ. of Science and Technology MISiS, Moscow (Russia)
  3. Rutherford Appleton Lab., Didcot (United Kingdom)
  4. Ames Lab. and Iowa State Univ., Ames, IA (United States)
  5. Inst. Laue-Langevin, Grenoble (France)
  6. Hiroshima Univ., Hiroshima (Japan)
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1561962
Alternate Identifier(s):
OSTI ID: 1564345
Report Number(s):
IS-J-10027
Journal ID: ISSN 2469-9950; PRBMDO
Grant/Contract Number:  
721.012.102; AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 100; Journal Issue: 5; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Bannenberg, L. J., Sadykov, R., Dalgliesh, R. M., Goodway, C., Schlagel, D. L., Lograsso, T. A., Falus, P., Lelièvre-Berna, E., Leonov, A. O., and Pappas, C. Skyrmions and spirals in MnSi under hydrostatic pressure. United States: N. p., 2019. Web. doi:10.1103/PhysRevB.100.054447.
Bannenberg, L. J., Sadykov, R., Dalgliesh, R. M., Goodway, C., Schlagel, D. L., Lograsso, T. A., Falus, P., Lelièvre-Berna, E., Leonov, A. O., & Pappas, C. Skyrmions and spirals in MnSi under hydrostatic pressure. United States. doi:10.1103/PhysRevB.100.054447.
Bannenberg, L. J., Sadykov, R., Dalgliesh, R. M., Goodway, C., Schlagel, D. L., Lograsso, T. A., Falus, P., Lelièvre-Berna, E., Leonov, A. O., and Pappas, C. Fri . "Skyrmions and spirals in MnSi under hydrostatic pressure". United States. doi:10.1103/PhysRevB.100.054447.
@article{osti_1561962,
title = {Skyrmions and spirals in MnSi under hydrostatic pressure},
author = {Bannenberg, L. J. and Sadykov, R. and Dalgliesh, R. M. and Goodway, C. and Schlagel, D. L. and Lograsso, T. A. and Falus, P. and Lelièvre-Berna, E. and Leonov, A. O. and Pappas, C.},
abstractNote = {The archetype cubic chiral magnet MnSi is home to some of the most fascinating states in condensed matter, such as skyrmions and a non-Fermi-liquid behavior in conjunction with a topological Hall effect under hydrostatic pressure. Using small angle neutron scattering, we study the evolution of the helimagnetic, conical, and skyrmionic correlations with increasing hydrostatic pressure. We show that the helical propagation vector smoothly reorients from < 111 > to < 100 > at intermediate pressures. At higher pressures, above the critical pressure, the long-range helimagnetic order disappears at zero magnetic field. Nevertheless, skyrmion lattices and conical spirals form under magnetic fields, in a part of the phase diagram where a topological Hall effect and a non-Fermi-liquid behavior have been reported. These unexpected results shed light on the puzzling behavior of MnSi at high pressures and the mechanisms that destabilize the helimagnetic long-range order at the critical pressure.},
doi = {10.1103/PhysRevB.100.054447},
journal = {Physical Review B},
number = 5,
volume = 100,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 30, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Spontaneous skyrmion ground states in magnetic metals
journal, August 2006

  • Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C.
  • Nature, Vol. 442, Issue 7104, p. 797-801
  • DOI: 10.1038/nature05056